Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vô bài toán được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
\(=1-\frac{1}{\sqrt{2016}}\)
\(A=1-2+\frac{1}{3}+4-5+\frac{1}{6}+...+2014-2015+\frac{1}{2016}\)
\(=\left(-1\right)+\frac{1}{3}+\left(-1\right)+\frac{1}{6}+...+\left(-1\right)+\frac{1}{2016}\)
\(=\left[\left(-1\right)+\left(-1\right)+...+\left(-1\right)\right]+\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(-1\right)\cdot685+2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4032}\right)=-685+2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{63\cdot64}\right)\)
\(=-685+2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{63}-\frac{1}{64}\right)=-685+2\cdot\left(\frac{1}{2}-\frac{1}{64}\right)\)
\(=-685+2\cdot\left(\frac{32}{64}-\frac{1}{64}\right)=-685+2\cdot\frac{31}{64}=-685+\frac{31}{32}=-\frac{21889}{32}\)
Đặt \(\sqrt{x-2014}=a;\sqrt{y-2015}=b;\sqrt{z=2016}=c\)(với a,b,c>0). Khi đó pt trở thành:
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)\(\Leftrightarrow\left(\frac{1}{4}-\frac{1}{a}+\frac{1}{a^2}\right)+\left(\frac{1}{4}-\frac{1}{b}+\frac{1}{b^2}\right)+\left(\frac{1}{4}-\frac{1}{c}+\frac{1}{c^2}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{a}\right)^2+\left(\frac{1}{2}-\frac{1}{b}\right)^2+\left(\frac{1}{2}-\frac{1}{c}\right)^2=0\Leftrightarrow a=b=c=2\)
\(\Rightarrow x=2018;y=2019;z=2020\)
\(\frac{\sqrt{x-2014}-1}{x-2014}+\frac{\sqrt{y-2015}-1}{y-2015}+\frac{\sqrt{z-2016}-1}{z-2016}=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}-\left(\frac{1}{x-2014+y-2015+z-2016}\right)=\frac{3}{4}\)
\(\frac{\sqrt{x-2014}}{x-2014}+\frac{\sqrt{y-2015}}{y-2015}+\frac{\sqrt{z-2016}}{z-2016}+0=\frac{3}{4}\)
\(\frac{\sqrt{x}-\sqrt{2014}}{x-2014}+\frac{\sqrt{y}-\sqrt{2015}}{y-2015}+\frac{\sqrt{z}-\sqrt{2016}}{z-2016}=\frac{3}{4}\)
\(x=2018,y=2019,z=2020\)
hazzzzzz đăng lên đây thầy cô cũng ko giải , ko thành viên nào giải chỉ toàn thấy cmr tào lao, thui đi kiếm trang khác hỏi
2M=2/1*2*3+...+2/2014*2015*2016
=1/1*2-1/2*3+...+1/2014*2015-1/2015*2016
=1/1*2-1/2015*2016(khử liên tiếp)
=1/2-1/4062240=2031119/4062240.
Cảm ơn bạn