Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)
\(\Leftrightarrow\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)
\(\Leftrightarrow m=4\left(tm\right)\)
b/ \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow n=10\)
\(\Leftrightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{10}\)
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\frac{1^4}{3^4}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy n = 4
b) \(\frac{-512}{343}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\frac{-8^3}{7^3}=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow\left(\frac{-8}{7}\right)^3=\left(\frac{-8}{7}\right)^n\)
\(\Rightarrow n=3\)
Vậy n = 3
a) Câu này thiếu đề nhé bạn.
b) \(\frac{25}{5^n}=5\)
\(\Rightarrow5^n=25:5\)
\(\Rightarrow5^n=5\)
\(\Rightarrow5^n=5^1\)
\(\Rightarrow n=1\)
Vậy \(n=1.\)
c) \(\frac{81}{\left(-3\right)^n}=-243\)
\(\Rightarrow\left(-3\right)^n=81:\left(-243\right)\)
\(\Rightarrow\left(-3\right)^n=-\frac{1}{3}\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^{-1}\)
\(\Rightarrow n=-1\)
Vậy \(n=-1.\)
e) \(\left(\frac{1}{3}\right)^n=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
f) \(\left(-\frac{3}{4}\right)^n=\frac{81}{256}\)
\(\Rightarrow\left(-\frac{3}{4}\right)^n=\left(-\frac{3}{4}\right)^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
Chúc bạn học tốt!
d) \(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(\frac{1}{2}+4\right)=288\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}\)
\(\Rightarrow2^n=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
Vậy \(n=6.\)
g) \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^n\)
\(\Rightarrow\left(-\frac{8}{7}\right)^n=\left(-\frac{8}{7}\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3.\)
h) \(5^{-1}.25^n=125\)
\(\Rightarrow5^{-1}.5^{2n}=5^3\)
\(\Rightarrow5^{-1+2n}=5^3\)
\(\Rightarrow-1+2n=3\)
\(\Rightarrow2n=3+1\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=4:2\)
\(\Rightarrow n=2\)
Vậy \(n=2.\)
k) \(3^{-1}.3^n+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)
\(\Rightarrow3^{n-1}.\left(1+6\right)=7.3^6\)
\(\Rightarrow3^{n-1}.7=7.3^6\)
\(\Rightarrow n-1=6\)
\(\Rightarrow n=6+1\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
Bài 1:
a)
\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)
\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)
\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)
b)
\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)
\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)
c)
\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)
\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)
Bài 2:
a)
\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)
b)
\((\frac{1}{2}-x)^2=(-2)^2=2^2\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)
c)
\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)
\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)
d)
\(3^{2x+1}=81=3^4\)
\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)
a)\(25\frac{3}{5}:\left(\frac{-2}{3}\right)-15\frac{3}{5}:\left(\frac{-2}{3}\right)\)
\(=\left(25\frac{3}{5}-15\frac{3}{5}\right):\left(-\frac{2}{3}\right)\)
\(=10:\left(\frac{-2}{3}\right)\)
\(=-15\)
b)\(9.\left(\frac{-2}{3}\right)^3+\frac{1}{2}:5\)
\(=9.\frac{-8}{27}+\frac{1}{10}\)
\(=\frac{-8}{3}+\frac{1}{10}\)
\(=\frac{-77}{30}\)
c)\(\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\frac{2}{5}:\left(\frac{-6}{5}\right)\)
\(=\frac{-1}{3}\)
\(a.25\frac{3}{5}:\left(-\frac{2}{3}\right)-15\frac{3}{5}:\left(-\frac{2}{3}\right)\)
\(=\frac{128}{5}:\left(-\frac{2}{3}\right)-\frac{75}{5}:\left(-\frac{2}{3}\right)\)
\(=\left(-\frac{192}{5}\right)-\left(-\frac{117}{5}\right)\)
\(=\frac{\left(-192\right)-\left(-117\right)}{5}\)
\(=-15\)
\(b.9.\left(-\frac{2}{3}\right)^3+\frac{1}{2}:5\)
\(=9.\left(-\frac{8}{27}\right)+\frac{1}{2}:5\)
\(=-\frac{8}{3}+\frac{1}{10}\)
\(=-\frac{77}{30}\)
\(c.\left[10\left(\frac{-1}{5}\right)^2+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\left[10\left(\frac{-1}{25}\right)+5\left(\frac{-1}{5}\right)+1\right]:\left(\frac{-1}{5}-1\right)\)
\(=\left[\frac{-2}{5}+\left(-1\right)+1\right]:\left(-\frac{6}{5}\right)\)
\(=\left(-\frac{2}{5}\right):\left(-\frac{6}{5}\right)\)
\(=\frac{1}{3}\)
a ) \(\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow m=4\)
b ) \(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow\left(\frac{3}{5}^2\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow\left(\frac{9}{25}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Leftrightarrow n=5\)
c ) \(\left(-0,25\right)^p=\frac{1}{256}\)
\(\Leftrightarrow\left(-\frac{1}{4}\right)^p=\frac{1}{256}\)
\(\Leftrightarrow\left(-\frac{1}{4}\right)^p=\left(-\frac{1}{4}\right)^4\)
\(\Leftrightarrow p=4\)
\(a.\)
\(\left(\frac{1}{3}\right)^m=\frac{1}{81}\)
\(\Rightarrow\left(\frac{1}{3}\right)^m=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow m=4\)
Vậy : \(m=4\)
\(b.\)
\(\left(\frac{3}{5}\right)^n=\left(\frac{9}{25}\right)^5\)
\(\Rightarrow\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^{15}\)
\(\Rightarrow n=5\)
Vậy : \(n=5\)
\(c.\)
\(\left(-0,25\right)^p=\frac{1}{256}\)
\(\Rightarrow\left(-\frac{1}{4}\right)^p=\frac{1}{256}\)
\(\Rightarrow\left(-\frac{1}{4}\right)^p=\left(\frac{1}{4}\right)^4\)
\(\Rightarrow p=4\)
Vậy : \(p=4\)