Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=\frac{2^{30}.2^{10}}{2^{30}}=2^{10}=1024\)
\(\frac{5^4\times20^4}{25^5\times4^5}=\frac{100^4}{100^5}=0.01\)
Đúng ko bn
1)
a) \(x^3=-125\)
⇒ \(x^3=\left(-5\right)^3\)
⇒ \(x=-5\)
Vậy \(x=-5.\)
b) \(\left(x+5\right)^3=-64\)
⇒ \(\left(x+5\right)^3=\left(-4\right)^3\)
⇒ \(x+5=-4\)
⇒ \(x=\left(-4\right)-5\)
⇒ \(x=-9\)
Vậy \(x=-9.\)
Chúc bạn học tốt!
1) a) \(x^3=-125\)
\(\Rightarrow x=-5\)
b) \(\left(x+5\right)^3=-64\)
\(\rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
2) \(M=\frac{8^{10}+4^{10}}{8^4+4^{12}}=\frac{4^{10}\left(2^{10}+1\right)}{4^4\left(16+4^8\right)}=\frac{1074790400}{16781312}=64,05\)
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8-x^7=0\)
\(\Rightarrow x^7\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vì :\(x\ne0\Rightarrow x=1\)
b)\(x^{10}=25.x^8\)
\(\Leftrightarrow x^{10}-5^2.x^8=0\)
\(\Rightarrow x^8\left(x^2-5^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^8=0\\x^2-5^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=5^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(\frac{8^{14}}{4^{12}}\)
= \(\frac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}\)
= \(\frac{2^{42}}{2^{24}}\)
= 242 - 24
= 218
\(\frac{8^{14}}{4^{12}}\)\(=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}\)\(=\frac{2^{42}}{2^{24}}=2^{18}=262144\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=\frac{2^{40}}{2^{30}}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{25}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{25}\left(1+2^5\right)}\)
\(=\frac{2^{15}\left(2^{20}+1\right)}{1+2^5}\)
\(=\frac{2^{35}+2^{15}}{1+2^5}\)