Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Lời giải:
a)
\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)
\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)
b)
Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:
\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)
\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)
\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)
\(=1+0+1=2\)
Ta có : \(\cot\left(37\right)=\tan\left(53\right)\) ,\(\sin^2\alpha+\cos^2\alpha=1,\tan\alpha\cdot\cot\alpha=1\)
\(sin\left(28\right)=\cos\left(62\right)\)
\(\Leftrightarrow sin^2\left(28\right)=\cos^2\left(62\right)\)
\(\cot\left(36\right)=\tan\left(54\right)\)
Đề : \(\cot\left(37\right)\cdot\cot\left(53\right)+\sin^2\left(28\right)-\frac{3\cdot\tan\left(54\right)}{\cot\left(36\right)}+sin^2\left(62\right)\)
\(=\tan\left(53\right)\cdot\cot\left(53\right)+\cos^2\left(62\right)-\frac{3\cdot\tan\left(54\right)}{\tan\left(54\right)}+\sin^2\left(62\right)\)
\(=\)\(\tan\left(53\right)\cdot\cot\left(53\right)+\cos^2\left(62\right)+\sin^2\left(62\right)-\frac{3\cdot\tan\left(54\right)}{\tan\left(54\right)}\)
\(=1+1-3\)
\(=-1\)
ta có : \(M=2cot37.cot53+sin^228\dfrac{3tan54}{cot36}+sin^262\)
\(=2.cot37.cot\left(90-37\right)+sin^228\dfrac{3tan54}{cot\left(90-54\right)}+sin^262\)
\(=2.cot37.tan37+sin^228\dfrac{3tan54}{tan54}+sin^262\)\(=2+3sin^228+sin^262=2+2sin^228+sin^228+sin^2\left(90-28\right)\)
\(=2+2sin^228+sin^228+cos^228=3+2sin^228\)
Lời giải:
a) Ta có tính chất quen thuộc là nếu \(\alpha+\beta=90^0\Rightarrow \cos \alpha=\sin \beta\)(có thể thấy rất rõ khi xét một tam giác vuông)
Tức là \(\sin \beta=\cos (90-\beta)\)
Do đó:
\(A=(\sin ^22^0+\sin ^288^0)+(\sin ^24^0+\sin ^286^0)+...+(\sin ^244^0+\sin ^246^0)\)
\(=\underbrace{(\sin ^22^0+\cos ^22^0)+(\sin ^24^0+\cos ^24^0)+...+(\sin ^244^0+\cos ^244^0)}_{22\text{cặp}}\)
\(=\underbrace{1+1+...+1}_{22}=22\) (tổng 2 bình phương sin và cos của một góc thì bằng 1)
b)
\(P=1994(\sin ^6x+\cos ^6x)-2991(\sin ^4x+\cos ^4x)\)
\(=1994[(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos^2 x+\cos ^4x)]-2991(\sin ^4x+\cos ^4x)\)
\(=1994(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2991(\sin ^4x+\cos ^4x)\)
\(=-1994\sin ^2x\cos ^2x-997\sin ^4x-997\cos ^4x\)
\(=-997(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x) \)
\(=-997(\sin ^2x+\cos ^2x)^2=-997\)
Do đó biểu thức không phụ thuộc vào $x$
Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)
Do đó:
a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)
a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)
=1+1+1+1/2
=3,5
c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)
d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)
=1-1+1-1/2
=1/2
A=tag53o +sin2 18o -tag23o +cos218o-3*cot57o/cot57o
=tag30o-3=căn 3/3-3=căn 3 -9