K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

a,b you cứ tính bt nhé

c)\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{4}-\frac{1}{11}\)

\(=\frac{7}{44}\)

d) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{150}{31}\)

27 tháng 5 2017

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)

b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)

27 tháng 5 2017

a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
    = \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
    = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)                                                          
    = \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
    = \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ... 

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

15 tháng 8 2019

\(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}+14\frac{8}{23}\)

\(A= \left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)

\(A=\left[\left(49-14\right)-\left(\frac{8}{23}-\frac{8}{23}\right)\right]-5\frac{7}{32}\)

\(A=\left[35-0\right]-5\frac{7}{32}\)

\(A=35-5\frac{7}{32}\)

\(A=\frac{953}{32}\)

\(B=71\frac{38}{45}-\left(43\frac{38}{45}-1\frac{17}{57}\right)\)

\(B=71\frac{38}{45}-\frac{36377}{855}\)

\(B=\frac{1670}{57}\)

\(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right):\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\left[\frac{51}{8}:\frac{7}{12}\right]:\frac{4}{5}\)

\(C=\frac{153}{14}:\frac{4}{5}\)

\(C=\frac{765}{56}\)

\(D=\left[\left(\frac{10}{15}-\frac{2}{3}\right):\frac{1}{7}\right]\cdot0,15-\frac{1}{4}\)

\(D=\left[0:\frac{1}{7}\right]\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0\cdot\frac{3}{20}-\frac{1}{4}\)

\(D=0-\frac{1}{4}\)

\(D=-\frac{1}{4}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot2\frac{1}{2}-\left[\left(\frac{1}{2}+\frac{1}{3}\right):\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\left[\frac{5}{6}:\frac{53}{90}\right]:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{28}{45}\cdot\frac{5}{2}-\frac{75}{53}:\frac{50}{53}\)

\(E=\frac{13}{30}+\frac{14}{9}-\frac{3}{2}\)

\(\)\(E=\frac{22}{45}\)

CHUC BAN HOC TOT >.<