Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x5-70x4-70x3-70x2-70x+34 taị x=71
x=71⇒ x-1=71-1=70
A=x5- (x-1)x4 - (x-1)x3-(x-1)x2-(x-1)x + 34
A= x5- x5 + x4 - x4 + x3 - x3 + x2 - x2 + x + 34
A= x + 34⇒71+34=105
CHÚC BẠN HỌC TỐT ^.^
\(A=x^5-70x^4-70x^3-70x^2-70x+29\) (ở đây mình có sửa đề nha, vì nếu để +70x2 thì sẽ không đúng với quy luật của bài toán và kết quả sẽ rất lớn)\(\Leftrightarrow A=x^5-71x^4+x^4-71x^3+x^3-71x^2+x^2-71x+x-71+100\)\(\Leftrightarrow A=x^4\left(x-71\right)+x^3\left(x-71\right)+x^2\left(x-71\right)+x\left(x-71\right)+\left(x-71\right)+100\)\(\Leftrightarrow A=\left(x-71\right)\left(x^4+x^3+x^2+x+1\right)+100\)
Với x = 71 thì:
\(A=\left(71-71\right)\left(71^4+71^3+71^2+71+1\right)+100\) \(\Leftrightarrow A=0\times\left(71^4+71^3+71^2+71+1\right)+100\)
\(\Leftrightarrow A=100\)
Với x = 71 thì:
\(A=\left(71-71\right)\left(71^4+71^3+71^2+141\times71+9941\right)+705840\) \(\Leftrightarrow A=0\times\left(71^4+71^3+71^2+141\times71+9941\right)+705840\)
\(\Leftrightarrow A=705840\)
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(=x^5-\left(71-1\right)x^4-\left(71-1\right)x^3-\left(71-1\right)x^2-\left(71-1\right)x+34\)
\(=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(=x+34=71+34=105\)
\(A=x^5-70x^4-70x^3-70x^2-70x+34\)
\(\Rightarrow A=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x+34\)
\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(A=71+34\)
\(A=105\)
Với x = 71 thì x -1 = 70
\(x^5-x^4\left(x-1\right)-x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+34\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+34\)
\(=71+34=105\)
Vậy biểu thức trên không phụ thuộc vào biến x
Bài giải:
49x2 – 70x + 25 = (7x)2 – 2 . 7x . 5 + 52 = (7x – 5)2
a) Với x = 5: (7 . 5 – 5)2 = (35 – 5)2 = 302 = 900
b) Với x = 17: (7 . 17 – 5)2 = (1 – 5)2 = (-4)2 = 16
Áp dụng định lý Bơ-du:
Thay \(f\left(6\right)\)vào \(f\left(x\right)\)ta được:
\(f\left(6\right)=-2.6^5+70.6^3-4.6^2+6-1\)
\(f\left(6\right)=-2.7776+70.216-4.36+6-1\)
\(f\left(6\right)=-571\)
Vậy số dư là -571
\(49x^2-70x+25=\left(7x-5\right)^2\)2
a) Thay x=5 vào biểu thức trên ta có : \(\left(7\times5-5\right)^2=30^2=900\)
Vậy giá trị của biểu thức đã cho là 900 tại x=5
b) Thay x=\(\frac{1}{7}\) vào biểu thức trên ta có : \(\left(7\times\frac{1}{7}-5\right)^2=\left(-4\right)^2=16\)
Vậy giá trị của biểu thức đã cho là 16 tại x=\(\frac{1}{7}\)
Giải:
\(A=49x^2-70x+25\)
\(\Leftrightarrow A=\left(7x\right)^2-2.7x.5+5^2\)
\(\Leftrightarrow A=\left(7x-5\right)^2\)
a) Tại \(x=5\), giá trị của A là:
\(A=\left(7.5-5\right)^2\)
\(\Leftrightarrow A=\left(35-5\right)^2\)
\(\Leftrightarrow A=30^2=900\)
b) Tại \(x=\dfrac{1}{4}\), giá trị của A là:
\(A=\left(7.\dfrac{1}{4}-5\right)^2\)
\(A=\left(\dfrac{7}{4}-5\right)^2\)
\(A=\left(\dfrac{-13}{4}\right)^2=\dfrac{169}{16}\)
Vậy ...
\(A=\)\(x^5-70x^4-70^3+70x+29\)
\(=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3+\left(x-1\right)x+29\)
\(=x^5-x^5+x^4-x^4+x^3+x^2-x+29\)
\(=x^3+x^2-x+29\)
.........
\(B=x^5-36x^4+37x^3-69x^2-34x+15\)
\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x-1\right)^2-\left(x-1\right)x+15\)
\(=x^5-x^5-x^4+x^4+2x^3-4x^2+4x-1-x^2+x+15\)
\(=2x^3-5x^2+5x+15\)
...........