Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) F = \(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
F = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}\right)+\frac{1}{2}.\left(\frac{1}{27}-\frac{1}{29}\right)+\frac{1}{2}.\left(\frac{1}{29}-\frac{1}{31}\right)+...+\frac{1}{2}.\left(\frac{1}{73}-\frac{1}{75}\right)\)
F = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
F = \(\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
F = \(\frac{1}{2}.\frac{2}{75}\)
F = \(\frac{1}{75}\)
b) G = \(\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
G = \(\frac{15}{4}.\frac{4}{90.94}+\frac{15}{4}.\frac{4}{94.98}+\frac{15}{4}.\frac{4}{98.102}+...+\frac{15}{4}.\frac{4}{146.150}\)
G = \(\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}\right)+\frac{15}{4}.\left(\frac{1}{94}-\frac{1}{98}\right)+\frac{15}{4}.\left(\frac{1}{98}-\frac{1}{102}\right)+...+\frac{15}{4}.\left(\frac{1}{146}-\frac{1}{150}\right)\)
G = \(\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
G = \(\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\)
G = \(\frac{15}{4}.\frac{1}{225}\)
G = \(\frac{1}{60}\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>12.4 +14.6 +...+198.100
=12 (22.4 +24.6 +...+298.100 )
<br class="Apple-interchange-newline"><div id="inner-editor"></div>=12 (12 −14 +14 −16 +...+198 −1100 )
<br class="Apple-interchange-newline"><div id="inner-editor"></div>=12 (12 −14 +14 −16 +...+198 −1100 )
<br class="Apple-interchange-newline"><div id="inner-editor"></div>=12 (12 −1100 )=12 .49100 =49200
1056 +10140 +10260 +...+101400 =53 (
Tk mình đi mọi người mình bị âm nè!
ai tk mình mình tk lại cho!!!
\(A=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\\ A=\frac{1}{75}\)
\(B=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146+150}=\frac{1}{4}\left(\frac{15}{90}-\frac{15}{94}+\frac{15}{94}-\frac{15}{98}+...+\frac{15}{146}-\frac{15}{150}\right)\)
\(B=\frac{1}{4}\left(\frac{15}{90}-\frac{15}{150}\right)=\frac{1}{60}\)
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2\cdot\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{15\cdot16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{16}\right)=2\cdot\frac{3}{16}=\frac{3}{8}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{25\cdot28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)