K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

a.Tam giác ADC vuông tại D :

\(AC=\sqrt{AD^2+CD^2}=\sqrt{8^2+15^2}=17\)(cm)

b.Xét tam giác ACD vuông tại D

Theo hệ thức lượng ta có:

DM.AC=AD.DC

DM=\(\frac{8\cdot15}{17}=\frac{120}{17}\)(cm)

c.Ta thấy tam giác ANM ~ tam giác INB

mà tam giác INB ~  tam giác ICM

vậy tam giác ANM ~ tam giác ICM

từ đó ta có được 

MN.MI=CM.AM

Mặt khác áp dụng htl trong tam giác ADC ta có: CM.AM=DI2

Vậy MN.MI=DI2

@.@

a: ABCD là hình chữ nhật

=>\(AC^2=AD^2+DC^2\)

=>\(AC=\sqrt{8^2+15^2}=17\left(cm\right)\)

b: ΔDAC vuông tại D có DM là đường cao

nên DM^2=MA*MC; DM*AC=DA*DC
=>DM*17=8*15

=>DM=120/17(cm)

c: Xét ΔMAN vuông tại M và ΔMIC vuông tại M có

góc MAN=góc MIC

Do đó: ΔMAN đồng dạng với ΔMIC

=>MA/MI=MN/MC

=>MA*MC=MI*MN=MD^2

25 tháng 8 2023

Cái quan trọng là câu d ý bạn mấy câu đó mình làm được hết r

a: Xét ΔADC vuông tại D có 

\(AC^2=AD^2+DC^2\)

hay AC=17(cm)

11 tháng 6 2018

A B C D M 8 15

a ) Theo định lý py-ta-go cho \(\Delta ADC\) ta có :

\(AC=\sqrt{AD^2+CD^2}=\sqrt{8^2+15^2}=17cm\)

b ) Ta có : \(\Delta MDA\sim\Delta DCA\) ( tự chứng minh )

\(\Rightarrow\) \(\dfrac{MD}{CD}=\dfrac{AD}{AC}\)

\(\Rightarrow\) \(MD=\dfrac{CD.AD}{AC}=\dfrac{15.8}{17}=7,1cm\)