K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

\(\Rightarrow5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)

\(\Rightarrow5H-H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)\)

\(\Rightarrow4H=\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)

\(\Rightarrow5A=1+\frac{1}{5}+...+\frac{1}{5^{10}}\)

\(\Rightarrow5A-A=\left(1+..+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{11}}\right)\)

\(\Rightarrow4A=1-\frac{1}{5^{11}}\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{4.5^{11}}\)

\(\Rightarrow4H=\frac{1}{4}-\frac{1}{4.5^{11}}-\frac{11}{5^{12}}\)

\(\Rightarrow H=\frac{1}{16}-\frac{1}{4^2.5^{11}}-\frac{11}{4.5^{12}}\)

26 tháng 5 2019

Ta có : \(5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)

\(\Rightarrow4H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}+\frac{11}{5^{12}}\)

\(\Rightarrow20H=1+\frac{1}{5}+...+\frac{1}{5^{10}}+\frac{11}{5^{11}}\)

\(\Rightarrow16H=20H-4H=1+\frac{10}{5^{11}}-\frac{11}{5^{12}}\Leftrightarrow H=\frac{1+\frac{10}{5^{11}}-\frac{11}{5^{12}}}{16}.\)

28 tháng 10 2016

mai nhé

3 tháng 4 2020

Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)

=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)

Lấy 5A trừ A theo vế ta có :

5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)

4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)

Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)

=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)

Lấy 5B trừ B ta có : 

=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)

=> 4B =\(1-\frac{1}{5^{11}}\)

=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)

Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)

=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)

cậu ơi , mình quên không ghi 1 dữ liệu ạ 

n thuộc N 

V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????

24 tháng 4 2019

a, \(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}.\frac{12}{7}\)

\(=\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{12}{7}\)

\(=\frac{-5}{7}.1+\frac{12}{7}=\frac{-5}{7}+\frac{12}{7}=\frac{7}{7}=1\)

20 tháng 7 2020

5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)

=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)

=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)

Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)

=>16A<1

Do đó: A<1/16(đpcm)

22 tháng 2 2023

cho địt t trả lời

 

a) Ta có: \(\frac{-1}{12}-\left(2\frac{5}{8}-\frac{1}{3}\right)\)

\(=-\frac{1}{12}-\frac{21}{8}+\frac{1}{3}\)

\(=\frac{-6}{72}-\frac{189}{72}+\frac{24}{72}\)

\(=-\frac{19}{8}\)

b) Ta có: \(-1,75-\left(\frac{-1}{9}-2\frac{1}{18}\right)\)

\(=\frac{-7}{4}+\frac{1}{9}+\frac{37}{18}\)

\(=\frac{-63}{36}+\frac{4}{36}+\frac{74}{36}\)

\(=\frac{5}{12}\)

c) Ta có: \(\frac{2}{5}+\frac{-4}{3}+\frac{-1}{2}\)

\(=\frac{12}{30}+\frac{-40}{30}+\frac{-15}{30}\)

\(=-\frac{43}{30}\)

d) Ta có: \(\frac{3}{12}-\left(\frac{6}{15}-\frac{3}{10}\right)\)

\(=\frac{3}{12}-\frac{6}{15}+\frac{3}{10}\)

\(=\frac{15}{60}-\frac{24}{60}+\frac{18}{60}\)

\(=\frac{3}{20}\)

e) Ta có: \(\left(8\frac{5}{11}+3\frac{5}{8}\right)-3\frac{5}{11}\)

\(=\frac{93}{11}+\frac{29}{8}-\frac{38}{11}\)

\(=5+\frac{29}{8}=\frac{40}{8}+\frac{29}{8}=\frac{69}{8}\)

f) Ta có: \(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)

\(=\frac{4}{9}\cdot\left(-7\right)+\frac{59}{9}\cdot\left(-7\right)\)

\(=\left(-7\right)\cdot\left(\frac{4}{9}+\frac{59}{9}\right)=\left(-7\right)\cdot7=-49\)

g) Ta có: \(\frac{-1}{4}\cdot13\frac{9}{11}-0,25\cdot6\frac{2}{11}\)

\(=\frac{-1}{4}\cdot\frac{152}{11}+\frac{-1}{4}\cdot\frac{68}{11}\)

\(=\frac{-1}{4}\cdot\left(\frac{152}{11}+\frac{68}{11}\right)=-\frac{1}{4}\cdot20=-5\)

h) Ta có: \(5\frac{27}{5}+\frac{27}{23}+0,5-\frac{5}{27}+\frac{16}{23}\)

\(=\frac{52}{5}+\frac{27}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)

\(=\frac{52}{5}+\frac{43}{23}+\frac{1}{2}-\frac{5}{27}\)

\(=\frac{64584}{6210}+\frac{11610}{6210}+\frac{3105}{6210}-\frac{1150}{6210}\)

\(=\frac{78149}{6210}\)

i) Ta có: \(\frac{3}{8}\cdot27\frac{1}{5}-51\frac{1}{5}\cdot\frac{3}{8}+19\)

\(=\frac{3}{8}\cdot\frac{136}{5}-\frac{3}{8}\cdot\frac{206}{5}+\frac{3}{8}\cdot\frac{152}{3}\)

\(=\frac{3}{8}\cdot\left(\frac{136}{5}-\frac{206}{5}+\frac{152}{3}\right)=\frac{3}{8}\cdot\frac{110}{3}\)

\(=\frac{55}{4}\)

1: Ta có: \(\frac{12}{7}:\frac{16}{5}\)

\(=\frac{12}{7}\cdot\frac{5}{16}=\frac{60}{112}=\frac{15}{28}\)

2: Ta có: \(\frac{-2}{7}:\frac{6}{11}\)

\(=\frac{-2}{7}\cdot\frac{11}{6}=\frac{-22}{42}=\frac{-11}{21}\)

3: Ta có: \(\frac{-1}{7}:\frac{-1}{5}\)

\(=\frac{-1}{7}\cdot\frac{5}{-1}=\frac{5}{7}\)

4: Ta có: \(\left(-2\right):\frac{6}{11}\)

\(=\frac{-2\cdot11}{6}=\frac{-22}{6}=\frac{-11}{3}\)

5: Ta có: \(\frac{-6}{11}:\left(-3\right)\)

\(=\frac{-6}{11}\cdot\frac{1}{-3}=\frac{-6}{-33}=\frac{2}{11}\)