K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

Lời giải:
Ta luôn có tính chất sau : \(a^2\geq 0, \forall a\in\mathbb{R}\)

Như vậy:

a) \((x-2012)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (x-2012)^2_{\min}=0\).

Dấu "=" xảy ra khi $x-2012=0\Leftrightarrow x=2012$

b)

\((5x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (5x-2)^2+100\geq 0+100=100\)

Vậy \([(5x-2)^2+100]_{\min}=100\). Dấu "=" xảy ra khi \(5x-2=0\leftrightarrow x=\frac{2}{5}\)

c)

\((2x+1)^4=[(2x+1)^2]^2\geq 0, \forall x\in\mathbb{R}\Rightarrow (2x+1)^4-99\geq 0-99=-99\)

Vậy \([(2x+1)^4-99]_{\min}=-99\). Dấu "=" xảy ra khi $2x+1=0\leftrightarrow x=\frac{-1}{2}$

d)

\((x^2-36)^6=[(x^2-36)^3]^2\geq 0, \forall x\in\mathbb{R}\)

\(|y-5|\geq 0\) (theo tính chất trị tuyệt đối)

\(\Rightarrow (x^2-36)^6+|y-5|+2013\geq 0+0+2013=2013\)

Vậy GTNN của biểu thức đã cho là $2013$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} x^2-36=0\\ y-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\pm 6\\ y=5\end{matrix}\right.\)

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)

a: =>|5x+4|=19

=>5x+4=19 hoặc 5x+4=-19

=>5x=15 hoặc 5x=-23

=>x=3 hoặc x=-23/5

b: =>3|2x-9|=33

=>|2x-9|=11

=>2x-9=11 hoặc 2x-9=-11

=>2x=20 hoặc 2x=-2

=>x=10 hoặc x=-1

d: =>|17x-5|=|17x+5|

=>17x-5=17x+5 hoặc 17x-5=-17x-5

=>34x=0

hay x=0

25 tháng 3 2018

kì khu mấn chi ri mi