K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2020

A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020

A = (4x2 + 8xy + 4y2) + (x2 + 2x + 1) + (y2 - 2y + 1) + 2018

A = 4(x + y)2 + (x + 1)2 + (y - 1)2 + 2018 \(\ge\)2018

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)<=> x = -1 và y = 1

Vậy MinA = 2018 khi x = -1 và y = 1

b) B = x2 + 2y2 + 2xy - 2x - 6y + 2019

B = (x + y)2 - 2(x + y) + 1 +(y2 - 4y + 4) + 2014

B = (x + y - 1)2 + (y - 2)2 + 2014 \(\ge\)2014

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy MinB = 2014 khi  x = -1 và y = 2

25 tháng 9 2020

A = 5x2 + 5y2 + 8xy + 2x - 2y + 2020

= ( 4x2 + 8xy + 4y2 ) + ( x2 + 2x + 1 ) + ( y2 - 2y + 1 ) + 2018

= 4( x2 + 2xy + y2 ) + ( x + 1 )2 + ( y - 1 )2 + 2018

= 4( x + y )2 + ( x + 1 )2 + ( y - 1 )2 + 2018 ≥ 2018 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

=> MinA = 2018 <=> x = -1 ; y = 1

B = x2 + 2y2 + 2xy - 2x - 6y + 2019

= ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2014

= [ ( x2 + 2xy + y2 ) - ( 2x + 2y ) + 1 ] + ( y - 2 )2 + 2014

= [ ( x + y )2 - 2.( x + y ).1 + 12 ] + ( y - 2 )2 + 2014

= ( x + y - 1 )2 + ( y - 2 )2 + 2014 ≥ 2014 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

=> MinB = 2014 <=> x = -1 ; y = 2

1 tháng 5 2018

A \(=\) x\(^2\) +2y\(^2\) - 2xy- 4y + 5

\(=\) ( x\(^2\) + y\(^2\) - 2xy ) + ( y\(^2\) - 4y + 4 ) + 1

\(=\) ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1

Vì ( x + y )\(^2\) và ( y - 2 )\(^2\) > 0 ∀ x và y

Nên ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1 > 1 ∀ x và y

Vậy A có giá trị nhỏ nhất là 1 khi

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\text{x + y =0}\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)

B = 5x\(^2\) + 8xy + 5y\(^2\) - 2x = 2y ???

Đề bài câu B sai

4 tháng 5 2018

Mình ghi sai đề

B=5x2 +8xy + 5y2 - 2x +2y mới đúng

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

21 tháng 7 2017

\(D=\left(x^2+y^2+1^2+2\left(x-y-xy\right)\right)+\left(y^2-4y+4\right)+\left(2020-1-16\right)\)\(D=\left(x-y+1\right)^2+\left(y-2\right)^2+2015\ge2015\)

21 tháng 7 2017

chưa xong vậy

1 tháng 1 2020

Ta có: x^2+2y^2-2xy+2x+2-4y=0

=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0

=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0

=> (x-y+1)^2+(y-1)^2=0

mà (x-y+1)^2> hoặc=0 với mọi x;y

(y-1)^2> hoặc=0 với mọi x;y

nên x-y+1=0;y-1=0

=> y=1; x=0

5 tháng 10 2015

a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên

2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0

4x^2+2y^2-4y-12x+4xy+10=0

(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0

(2x+y)^2-6(2x+y)+9+(y-1)^2=0

(2x+y-3)^2+(y-1)^2=0(*)

vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi

(2x+y-3)^2=0<=>2x-2=0<=>x=1

(Y-1)^2=0<=>y=1

 

 

28 tháng 12 2016

x=1 y=1