Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)
c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)
d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)
e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng
Đặt: A=3-10x2-4xy-4y2=3-(10x2+4xy+4y2)=3-[9x2+(x2+4xy+4y2)]=3-[9x2+(x+2y)2]
Do [9x2+(x+2y)2]\(\ge\)0 với mọi x, y
=> A=3-[9x2+(x+2y)2]\(\le\)3 với mọi x, y
=> GTLN của A là 3
Đạt được khi x=y=0
\(A=5-x^2+2x-4y^2-4y=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\\ =-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\2y+1=0\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
vậy MAX A=7 tại \(\left\{{}\begin{matrix}x=1\\y=-0,5\end{matrix}\right.\)
\(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\\ D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
đặt: \(t=x^2+5x\) khi đó:
\(D=\left(t-6\right)\left(t+6\right)\\ D=t^2-36\ge-36\)
đẳng thức xảy ra khi :
\(t=0\\ \Leftrightarrow x^2+5x=0\\ x\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
vậy MAX D=-36 tại x=0 hoặc x=-5
GTNN nak !!!
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)
\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
Đề đúng: \(C=x^2+4y^2+2x-4y-4xy+2011\)
\(C=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+2010\)
\(C=\left(x-2y\right)^2+2\left(x-2y\right)+1+2010\)
\(C=\left(x-2y+1\right)^2+2010\ge2010\)
Dấu "=" xảy ra khi: \(\left(x-2y+1\right)^2=0\)
=> Ta có vô số cặp (x;y) thỏa mãn ví dụ như:
(1;1) ; (-1;0) ; (3;2) ; ...
C = x2 + 4y2 + 2x - 4y - 4xy + 2011 ( đúng chưa :v )
C = [ ( x2 - 4xy + 4y2 ) + 2x - 4y + 1 ] + 2010
C = [ ( x - 2y )2 + 2( x - 2y ) + 1 ] + 2010
C = [ ( x - 2y ) + 1 ]2 + 2010
C = ( x - 2y + 1 )2 + 2010 ≥ 2010 ∀ x,y
Đẳng thức xảy ra <=> x - 2y + 1 = 0
<=> x - 2y = -1
<=> x = 2y - 1
=> MinC = 2011 <=> x = 2y - 1
\(B=9x^2-12x=\left(9x^2-12x+4\right)-4=\left(3x-2\right)^2-4\ge-4\)Vậy \(Min_B=-4\) khi \(3x-2=0\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
\(D=3-10x^2-4xy-4y^2=3-\left(3x\right)^2-\left(x^2+4xy+4y^2\right)=3-\left(3x\right)^2-\left(x+2y\right)^2\le3\)Vậy \(Max_D=3\) khi \(\left[{}\begin{matrix}3x=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tks bn nha