Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=5x-x^2\)
\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Vậy Max A = \(\dfrac{25}{4}\) khi \(x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\)
\(b,B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Vậy Max B = \(\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(c,4x-x^2+3=7-\left(4-4x+x^2\right)\)
\(=7-\left(2-x\right)^2\le7\forall x\)
vậy Max C = 7 khi 2 - x =0 => x = 2
\(d,D=-x^2+8x-11=-\left(x^2-8x+16\right)+5\)
\(=-\left(x-4\right)^2+5\le5\forall x\)
vậy Max D = 5 khi x - 4 = 0 => x = 4
\(e,E=5-8x-x^2=21-\left(16+8x+x^2\right)\)
\(=21-\left(4+x\right)^2\le21\forall x\)
Vậy Max E = 21 khi 4 + x = 0 => x = -4
\(f,F=4x-x^2+1=5-\left(4-4x+x^2\right)\)
\(=5-\left(4-x\right)^2\le5\forall x\)
Vậy Max F = 5 khi 4 - x =0 => x = 4
F =x^4-6x^3+9x^2+x^2-6x+9
=(x^2-3x)^2 + (x-3)^2
ta thấy (x^2-3x)^2 >= 0
(x-3)^2>=0
=>GTNN của C là 0
dấu bằng xảy ra khi và chỉ khi x=3
\(a.A=5x-x^2\)
\(=-\left(x^2-5x\right)=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\right]=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(\Rightarrow Max_A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
\(b.B=x-x^2=-\left(x^2-x\right)=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow Max_B=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(c.C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)
\(\Rightarrow Max_C=7\Leftrightarrow x=2\)
a) Ta có:
\(A=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x\right)-6,25+6,25\)
\(=-\left(x^2-5x+6,25\right)+6,25\)
\(=-\left(x-2,5\right)^2+6,25\)
Ta lại có:
\(\left(x-2,5\right)^2\ge0\)
\(\Rightarrow-\left(x-2,5\right)^2\le0\)
\(\Rightarrow-\left(x-2,5\right)^2+6,25\le6,25\)
\(\Rightarrow A\le6,25\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2,5\right)^2=0\)
\(\Leftrightarrow x-2,5=0\)
\(\Leftrightarrow x=2,5\)
Vậy MaxA = 6,25 \(\Leftrightarrow x=2,5\)
\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)
suy ra Amin=-1
\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10
Cái này cứ hằng đẳng thức là ra hếthết