K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán

26 tháng 12 2017

Sai rồi nhưng dù sao cx cảm ơn bn vì đã giúp mk

Thanks for helpme.

25 tháng 3 2018

\(A=\left(\dfrac{1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{6x+3}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\left(x+2\right)\)\(A=\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)\left(x+2\right)}\)

a) \(A=\left\{{}\begin{matrix}x\ne-1;-2\\\dfrac{1}{x^2-x+1}\end{matrix}\right.\)

b)

\(A>1;\dfrac{1}{x^2-x+1}>1\Leftrightarrow x^2-x< 0\Leftrightarrow0< x< 1\)

\(P=\dfrac{1}{x^2-x+1}.\dfrac{x^3-x^2+x}{\left(x+1\right)^2}=\dfrac{x}{\left(x+1\right)^2}\)

x>0 => P >0 đang tìm Giá trị LN => chỉ xét P>0 <=> x>0

\(\dfrac{1}{P}=\dfrac{\left(x+1\right)^2}{x}=x+2+\dfrac{1}{x}\)

áp co si hai số dương x ; 1/x

\(\dfrac{1}{P}\ge2.\sqrt{x.\dfrac{1}{x}}+2=4\Rightarrow P\le\dfrac{1}{4}\)

đẳng thức khi x =1/x => x=1 thỏa mãn đk của x

\(MaxP=\dfrac{1}{4}\)

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)

29 tháng 6 2017

Phép chia các phân thức đại số

a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^2+x+1}{x^2-x+1}\)

b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>A>0 với mọi x<>-1

12 tháng 6 2018

\(A=\dfrac{2x+1}{x^2+2}\)

*Min A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)

Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

*Max A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)

\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)

\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)

\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)

Vậy \(Max_A=1khi\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)