Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: TS= \(x^{95}+x^{94}+...+x+1\)(1)
=> x\(\cdot TS=x^{96}+x^{95}+...+x^2+x\)(2)
Từ (1)(2)=> \(\left(x-1\right)TS=x^{96}-1\)
=> \(TS=\frac{x^{96}-1}{x-1}\)
Ta có: MS=\(x^{31}+x^{30}+x^{29}+...+x+1\)(3)
=> x\(\cdot MS=x^{32}+x^{31}+x^{30}+...+x^2+x\)(4)
Từ (4)(3)=> \(\left(x-1\right)\cdot MS=x^{32}-1\)
<=> \(MS=\frac{x^{32}-1}{x-1}\)
Vậy A= \(\frac{x^{96}-1}{x-1}:\frac{x^{32}-1}{x-1}=\frac{x^{96}-1}{x^{32}-1}\)
Bạn tham khảo ở đây http://olm.vn/hoi-dap/question/660496.html
Theo đề bài: ab+bc+ca=0
=> \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}=0\)(chia 2 vế cho abc)
<=> \(\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}=3\cdot\frac{1}{abc}\)(1)
( Áp dụng tính chất x+y+z=0 suy ra \(x^3+y^3+z^3=3zxy\)- Bạn tự Cm)
Ta có: P=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\)\(\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)(2)
Từ (1)(2)=> P=abc\(\cdot3\cdot\frac{1}{abc}\)=3
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
\(x^2-x-1=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{5}{4}=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)
sai đề
Ta có: \(x^2-x-1=x^2-2\cdot\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\)= \(\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\)\(\le-\frac{5}{4}\)
=> x2-x-1 \(\le-\frac{5}{4}\) chứ ko phải nhỏ hơn 0
đặt A= \(\frac{x^3}{8}+\frac{x^2y}{4}+\frac{xy^2}{6}+\frac{y^3}{27}=\left(\frac{x}{2}\right)^3+3.\left(\frac{x}{2}\right)^2.\left(\frac{y}{3}\right)+3\left(\frac{x}{2}\right)\left(\frac{y}{3}\right)^2+\left(\frac{y}{3}\right)^3\)
= \(\left(\frac{x}{2}+\frac{y}{3}\right)^3\)
thay x=-8 vfa y=6 ta đucọ
A= \(\left(-\frac{8}{2}+\frac{6}{3}\right)^3=\left(-4+2\right)^3=\left(-2\right)^3=-8\)
nhưng mk vẫn ko hiểu cho lắm ở bước đầu