K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Leftrightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(\Leftrightarrow2A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}\)

\(\Leftrightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(\Leftrightarrow2A=1-\frac{1}{99}\)

\(\Leftrightarrow2A=\frac{99}{99}-\frac{1}{99}\)

\(\Leftrightarrow2A=\frac{98}{99}\)

\(\Leftrightarrow A=\frac{98}{99}\div2\)

\(\Leftrightarrow A=\frac{49}{99}\)

24 tháng 2 2019

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97+99}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(A=\left(1-\frac{1}{99}\right)+\left(-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\right)\)

\(A=\frac{98}{99}+0\)

\(A=\frac{98}{99}\)

8 tháng 8 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{3}.\frac{98}{99}\)

\(=\frac{98}{297}\)

Chuc bn học tốtbanh

8 tháng 8 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

29 tháng 1 2016

\(=\frac{2}{1.3.2}+\frac{2}{3.5.2}+\frac{2}{5.7.2}+...+\frac{2}{97.99.2}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

29 tháng 1 2016

= 1-1/3+1/3-1/5+1/5-1/7+...+1/97-1/99

= 1 - 1/99

= 98/99

25 tháng 2 2017

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

25 tháng 4 2018

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

23 tháng 2 2017

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

23 tháng 2 2017

S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)

S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\frac{98}{99}\)

S=\(\frac{49}{99}\)

10 tháng 4 2016

a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

Gọi biểu thức trên là A 

23 tháng 4 2017

A=1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+.........+1/97-1/99

=1-1/97=98/99

CHÕ KIA BN SAI ĐỀ MÌNH SỬA LUÔN CHO RỒI

23 tháng 4 2017

                              giải

A = \(\frac{1}{1.3}\)\(\frac{2}{3.5}\)\(\frac{2}{5.7}\)+....+\(\frac{2}{97.99}\)

     = \(\frac{1}{3}\)+ [ ( \(\frac{1}{3}\)\(\frac{1}{5}\)) +(\(\frac{1}{5}\)-\(\frac{1}{7}\)) +....+ (\(\frac{1}{97}\)-\(\frac{1}{99}\))]

     = \(\frac{1}{3}\)+ ( \(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{97}\)-\(\frac{1}{99}\))

    = \(\frac{1}{3}\)+(\(\frac{1}{3}\)-\(\frac{1}{99}\))

   = \(\frac{1}{3}\)\(\frac{32}{99}\)

    = \(\frac{1}{99}\)

Vậy A = \(\frac{1}{99}\)

                       GIẢI THIK CÁCH LÀM 

HAI SỐ TẠO NÊN TÍCH Ở MẪU CÓ SỐ T1 KÉMSỐ T2 BẰNG 1 SỐ Ở TỬ THÌ PHÂN SỐ ĐÓ SẼ BẰNG HIỆU CỦA  2 PHÂN SỐ CÓ TỬ LAF1 , MẪU LÀ SỐ T1 TRỪ ĐI PHÂN SỐ CÓ TỬ LÀ 1 , MẪU LÀ SỐ T2 

*chú ý rằng chỉ áp dụng cho phân số có mẫu có thừa số t1 kém thừa số t2 bằng tử thôi nha!

mik sẽ lấy vd cho bạn xem 

  \(\frac{3}{5.8}\)=\(\frac{1}{5}\)-\(\frac{1}{8}\)

chúc bạn học giỏi

30 tháng 6 2018

\(C=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{35.37}\)

\(C=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{35.37}\right)\)

\(C=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{37}\right)\)

\(C=\frac{1}{2}.\left(1-\frac{1}{37}\right)\)

\(C=\frac{1}{2}.\frac{36}{37}\)

\(C=\frac{18}{37}\)

30 tháng 6 2018

\(C=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{35.37}\)

\(C=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{37}\right)\)

\(C=\frac{1}{2}\cdot\left(1-\frac{1}{37}\right)\)

\(C=\frac{1}{2}\cdot\frac{36}{37}=\frac{18}{37}\)

Vay C = \(\frac{18}{37}\)