Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\Leftrightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(\Leftrightarrow2A=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{99-97}{97.99}\)
\(\Leftrightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(\Leftrightarrow2A=1-\frac{1}{99}\)
\(\Leftrightarrow2A=\frac{99}{99}-\frac{1}{99}\)
\(\Leftrightarrow2A=\frac{98}{99}\)
\(\Leftrightarrow A=\frac{98}{99}\div2\)
\(\Leftrightarrow A=\frac{49}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97+99}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(A=\left(1-\frac{1}{99}\right)+\left(-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{95}-\frac{1}{97}\right)\)
\(A=\frac{98}{99}+0\)
\(A=\frac{98}{99}\)
A có tổng cộng 49 số hạng, nhóm 2 số hạng liên tiếp với nhau được:
\(A=\left(\frac{1}{1.3}-\frac{2}{3.5}\right)+\left(\frac{3}{5.7}-\frac{4}{7.9}\right)+...+\left(\frac{47}{93.95}-\frac{48}{95.97}\right)+\frac{49}{97.99}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{93.97}+\frac{49}{97.99}\)=> \(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{93.97}+\frac{196}{97.99}=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{93}-\frac{1}{97}+\frac{196}{97.99}\)
=> \(4A=1-\frac{1}{97}+\frac{196}{97.99}=\frac{96}{97}+\frac{196}{97.99}=\frac{9700}{97.99}=\frac{100}{99}>1\)
\(4A>1=>A>\frac{1}{4}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
Bài 1
a) \(P=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
b) \(S=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)\(Q=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{10}{20}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Tk mình nha!!
Câu 2:
\(P=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right)...\left(\frac{99}{99}+\frac{1}{99}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)
\(=\frac{3\cdot4\cdot5...100}{2.3.4...99}\)
\(=\frac{3\cdot100}{2}\)
\(=\frac{300}{2}=150\)
c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3\left(1-\frac{1}{101}\right)\)
\(=\frac{300}{101}\)
Ta có :
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
Vậy \(A=\frac{25}{17}\)
Chúc bạn học tốt ~
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}\)
\(A=\frac{25}{17}\)
\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(B=\frac{21}{4}.33.\frac{4}{21}\)
\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)
\(B=33\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(C=\frac{1}{2}.\frac{98}{99}\)
\(C=\frac{49}{99}\)
\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
=> 2S + 1/101 = \(2.\frac{50}{101}+\frac{1}{101}=\frac{100}{101}+\frac{1}{101}=\frac{101}{101}=1\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{35.37}\)
\(C=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{35.37}\right)\)
\(C=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{37}\right)\)
\(C=\frac{1}{2}.\left(1-\frac{1}{37}\right)\)
\(C=\frac{1}{2}.\frac{36}{37}\)
\(C=\frac{18}{37}\)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{35.37}\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{35}-\frac{1}{37}\right)\)
\(C=\frac{1}{2}\cdot\left(1-\frac{1}{37}\right)\)
\(C=\frac{1}{2}\cdot\frac{36}{37}=\frac{18}{37}\)
Vay C = \(\frac{18}{37}\)