Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 4x4 + 7x2y2 + 3y4 + 5y2
A = 4x4 + 4x2y2 + 3x2y2 +3y4+ 5y2
A = 4x2.(x2+y2) + 3y2.(x2+y2) + 5y2
A = 4x2.5 + 3y2.5 + 5y2
A = 20x2 + 15y2 + 5y2
A = 20x2 + 20y2
A = 20.(x2+y2)
A = 20.5
A = 100
b) B = 2x2 + | 7x - 1 | - (5-x+2x2)
B = 2x2 + |7x-1| - 5 + x - 2x2
B = | 7x-1| - 5 + x = 2
=> | 7x-1| = 2 + 5 - x
| 7x-1| = 7 - x
TH1: 7x-1 = 7 - x
7x + x = 7 + 1
8x = 8
x = 1
TH2: 7x-1 = -7 + x
=> 7x - x = -7+1
6x = -6
x = -1
KL:...
uhhljjhkjgklhjkllrhjykljgtlhjiotuhiojuklnjkmbg,.fmn,.mv,.cmbm.fgnbthljioyhjuo56yuou5rgthytj
Bài làm:
Ta có: \(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3+3x^3y^2-5x^2\)
=> Bậc của đa thức A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
=> Bậc của đa thức B là 6
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)
\(A=3x^2y^3-5x^2+3x^3y^2\)
Xét bậc của từng hạng tử :
3x2y3 có bậc 5
-5x2 có bậc 2
3x3y2 có bậc 5
=> Bậc của A là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Xét bậc từng hạng tử
5/2 . x5y có bậc 6
7/3 xy4 có bậc 5
-1/4 x2y3 có bậc 5
=> Bậc của B là 6
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
a)\(A=x^3+x^2y-xy-y^2+3y+x-1\)
Ta có:\(x+y-2=0\Rightarrow x+y=2\)
\(A=x^2\left(x+y\right)-y\left(x+y\right)+3y+x-1\)
\(=2x^2-2y+3y+x-1\)
\(=2x^2+y+x-1\)
\(=2x^2+2-1\)
\(=2x^2+1\)
b) x - y = 0 => x = y
B = x( x^2 + y^2 ) - y ( x^2 + y^2 ) + 3
= x(x^2 + x^2 ) - x (x^2 + x^2 ) + 3
= 3
a: \(A=4x^4+4x^2y^2+3x^2y^2+3y^4+5y^2\)
\(=4x^2\left(x^2+y^2\right)+3y^2\left(x^2+y^2\right)+5y^2\)
\(=20x^2+15y^2+5y^2=20x^2+20y^2\)
\(=20\cdot5=100\)
b: \(B=2x^2+\left|7x-1\right|-5+x-2x^2\)
\(=\left|7x-1\right|+x-5\)
TH1: x>=1/7
B=7x-1+x-5=8x-6
TH2: x<1/7
B=1-7x+x-5=-6x-4
Để B=2 thì 8x-6=2 hoặc -6x-4=2
=>8x=8 hoặc -6x=6
=>x=1(nhận) hoặc x=-1(nhận)