K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Giải:

Ta có tính chất tổng quát:

\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)

\(=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

Áp dụng vào biểu thức

\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)

\(=1-\frac{1}{\sqrt{225}}\)

Câu 1: 

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

=>n+1=3000

hay n=2999

28 tháng 6 2017

đề sai rồi bạn sửa lại đi rồi mình giúp

28 tháng 6 2017

sai ở đâu v bn

 

22 tháng 7 2018

\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )

\(b.A>\dfrac{1}{3}\)\(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)

\(3-\sqrt{x}>0\)

\(x< 9\)

Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?

\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)

\(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)

22 tháng 7 2018

\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .

\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .

\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .

a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)

\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)

\(=\dfrac{1}{x-\sqrt{3}}\)

b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)

\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)

\(=x-2\sqrt{x}+1\)

c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

10 tháng 6 2018

B=\(2\sqrt{18}-4\sqrt{32}+\sqrt{72}+3\sqrt{8}\)

\(=6\sqrt{2}-16\sqrt{2}+6\sqrt{2}+6\sqrt{2}\)

\(=2\sqrt{2}\)

11 tháng 6 2018

\(B=2\sqrt{18}-4\sqrt{32}+\sqrt{72}+3\sqrt{8}\)

\(=6\sqrt{2}-16\sqrt{2}+6\sqrt{2}+6\sqrt{2}\)

\(=\sqrt{2}\left(6-16+6+6\right)\)

\(=2\sqrt{2}\)

\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+3\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{a-4}\)

\(=\dfrac{5a+15\sqrt{a}-3\sqrt{a}-9+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{a-4}\)

\(=\dfrac{-a^2+8a+5\sqrt{a}-19}{a-4}\)