K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Do AB//CD

=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )

  1000 + \(\widehat{D}\)=1800

             \(\widehat{D}\)=1800 - 1000

           \(\widehat{D}\)= 800

Xét tứ giác ABCD có :

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600

1000+1200+\(\widehat{C}\)+800 =3600

 3000 +\(\widehat{C}\)=3600

         \(\widehat{C}\)= 600

2) Từ B kẻ BE \(\perp\)CD

Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:

           AD=BC (tính chất hình thang cân)

          \(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)

=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )

=)  DH= CE (2 cạch tương ứng )

Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB

Xét tứ giác ABEH có

\(\widehat{BAH}\)\(\widehat{AHE}\) = \(\widehat{BEH}\) = 900

=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm

Ta có : DH+HE+EC= 20 cm

         2DH+10=20

         2DH =10

           DH = 5 (cm)

xét tam giác vuông AHD 

Áp dụng định lí Pitago ta có

AD2=AH2+HD2

AD2=122+52

AD2= 144+25=169

AD=13 cm (đpcm)

      

ta có góc A+ góc D = 180 độ

=> góc D = 180 - góc A = 180-60 = 120 độ

góc B + góc C = 180 độ

=> góc B = 180 - góc C = 180-130=50 độ       

18 tháng 8 2017

tứ giác ABCD có BC = CD và DB là tia phân giác của góc D chứng minh rằng ABCD là hình thang

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

22 tháng 6 2019

Em tham khảo câu 1 tại link dưới:

Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

27 tháng 8 2021

tia AB cắt DC tại E ta thấy 

AC là phân giác của góc ^DAE (gt) 

AC vuông DE (gt) 

=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác) 

lại có góc D = 60o nên ADE là tgiác đều 

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

mà BC // AD => BC là đường trung bình của tgiác ADE 
 

Ta có: 

AB = DC = AD/2 và BC = AD/2 

gt: AB + BC + CD + AD = 20 

=> AD/2 + AD/2 + AD/2 + AD = 20 

=> (5/2)AD = 20 

=> AD = 2.20 /5 = 8 cm