K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 6 2020

\(c^4-2\left(a^2+b^2\right)c^2+\left(a^2+b^2\right)^2=a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2-c^2\right)^2=a^2b^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2+b^2-c^2=ab\\a^2+b^2+c^2=-ab\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{ab}{2ab}=\frac{1}{2}\\cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{-ab}{2ab}=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C=60^0\\C=120^0\end{matrix}\right.\)

12 tháng 6 2020

oke bạn nhó

24 tháng 6 2019

Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)

Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)

Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

Ta có: \(b^4+c^4=a^4-2b^2c^2\)

\(\Leftrightarrow b^4+c^4+2b^2c^2-a^4=0\)

\(\Leftrightarrow (b^2+c^2)^2-(a^2)^2=0\)

\(\Leftrightarrow (b^2+c^2-a^2)(b^2+c^2+a^2)=0\)

\(\Rightarrow \left[\begin{matrix} b^2+c^2-a^2=0\\ b^2+c^2+a^2=0(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow b^2+c^2-a^2=0\Rightarrow b^2+c^2=a^2\)

Theo định lý Pitago đảo thì từ trên suy ra tam giác $ABC$ là tam giác vuông.

NV
5 tháng 5 2019

\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(=1-\frac{1}{2}sin^22x\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=2\end{matrix}\right.\) \(\Rightarrow a+3b+c=?\)

\(\frac{sin\left(A-B\right)}{sinC}=\frac{sin\left(A-B\right).sinC}{sin^2C}=\frac{sin\left(A-B\right).sin\left(A+B\right)}{sin^2C}=\frac{-\frac{1}{2}\left(cos2A-cos2B\right)}{sin^2C}\)

\(=\frac{-\frac{1}{2}\left(1-2sin^2A-1+2sin^2B\right)}{sin^2C}=\frac{sin^2A-sin^2B}{sin^2C}=\frac{\left(\frac{a}{2R}\right)^2-\left(\frac{b}{2R}\right)^2}{\left(\frac{c}{2R}\right)^2}=\frac{a^2-b^2}{c^2}\)

NV
5 tháng 5 2019

Câu 3:

a/ Đề dị dị, là \(\frac{cosA+cosB}{sinB+sinC}\) hay \(\frac{cosB+cosC}{sinB+sinC}\) bạn?

b/ \(cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B=C\Rightarrow\Delta ABC\) cân tại A

19 tháng 2 2016

15/25

 

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:

Theo BĐT Schur bậc 3:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)

\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)

\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)

Do đó:

\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)

\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)

Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)

\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.