Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+10}-4}{3x-9}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{2x+10-16}{3x-9}\cdot\dfrac{1}{\sqrt{2x+10}+4}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{2\left(x-3\right)}{3\left(x-3\right)\cdot\left(\sqrt{2x+10}+4\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{2}{3\left(\sqrt{2x+10}+4\right)}\)
\(=\dfrac{2}{3\cdot\sqrt{6+10}+3\cdot4}=\dfrac{2}{3\cdot4+3\cdot4}=\dfrac{2}{24}=\dfrac{1}{12}\)
b: \(\lim\limits_{x\rightarrow7}\dfrac{\sqrt{4x+8}-6}{x^2-9x+14}\)
\(=\lim\limits_{x\rightarrow7}\dfrac{4x+8-36}{\sqrt{4x+8}+6}\cdot\dfrac{1}{\left(x-2\right)\left(x-7\right)}\)
\(=\lim\limits_{x\rightarrow7}\dfrac{4x-28}{\left(\sqrt{4x+8}+6\right)\cdot\left(x-2\right)\left(x-7\right)}\)
\(=\lim\limits_{x\rightarrow7}\dfrac{4}{\left(\sqrt{4x+8}+6\right)\left(x-2\right)}\)
\(=\dfrac{4}{\left(\sqrt{4\cdot7+8}+6\right)\left(7-2\right)}\)
\(=\dfrac{4}{5\cdot12}=\dfrac{4}{60}=\dfrac{1}{15}\)
c: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-8x+15}{2x^2-9x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{2x^2-10x+x-5}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{\left(x-3\right)\left(x-5\right)}{\left(x-5\right)\left(2x+1\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{x-3}{2x+1}=\dfrac{5-3}{2\cdot5+1}=\dfrac{2}{11}\)
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
1/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}.\sqrt[4]{1+8x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}-1}{x}\)
Liên hợp dài quá ko muốn gõ tiếp, bạn tự đặt nhân tử chung rồi liên hợp nhé, kết quả ra 5
2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-2-\left(x^3-3x+2\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{7\left(x-1\right)}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)^2\left(x+2\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{7}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)\left(x+2\right)=\dfrac{7}{12}\)
3/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1+\dfrac{1}{x^2}}{2+\dfrac{3}{x}-\dfrac{1}{x^2}}=-\infty\)
4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{\sqrt[6]{x}}+\dfrac{1}{\sqrt[4]{x}}}{\sqrt{4+\dfrac{1}{x}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}\)
5/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{1+\dfrac{2}{x^2}}}{\sqrt[3]{8+\dfrac{1}{x}+\dfrac{1}{x^3}}}=\dfrac{1-1}{\sqrt[3]{8}}=0\)
6/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4+\dfrac{3}{x}-\dfrac{7}{x^2}}}{\sqrt[3]{27+\dfrac{5}{x}+\dfrac{1}{x^2}-\dfrac{4}{x^3}}}=\dfrac{-\sqrt{4}}{\sqrt[3]{27}}=\dfrac{-2}{3}\)
a: \(\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{x^2-5x+6}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{x+3}{x-2}=\dfrac{3+3}{3-2}=\dfrac{6}{1}=6\)
b: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-5x}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{x\left(x-5\right)}{x-5}=\lim\limits_{x\rightarrow5}x=5\)
c: \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-3x}{2x^2+9x+9}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x-3\right)}{2x^2+6x+3x+9}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{\left(-3\right)\left(-3-3\right)}{\left(-3+3\right)\left(2\cdot\left(-3\right)+3\right)}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{18}{0\cdot\left(-3\right)}=-\infty\)