K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

mình ko ấn dấu lim, bn tự biết thêm vào nhé:

\(\frac{x^2-4x+3}{\sqrt{4x+5}-3}=\frac{\left(x-3\right)\left(x-1\right)\left(\sqrt{4x+5}+3\right)}{4x-4}=\frac{\left(x-3\right)\left(\sqrt{4x+5}+3\right)}{4}=-3\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

1.

Trước hết bạn nhớ công thức:

$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)

Áp vào bài:

\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)

\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)

\(=1.\frac{1}{3}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

2.

\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)

\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)

\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)

\(=x+a\) 

15 tháng 10 2020

a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0

\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)

\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)

\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)

Đặt \(\log_x2=a\left(a\in R\right)\)

Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)

\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)

Vậy pt đã cho vô nghiệm

15 tháng 10 2020

cái đó phải là \(-42\log_{16x}x\) nhé bạn

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....

 

18 tháng 4 2016

\(I=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)\sqrt{3+2x-x^2}}=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)\left(\sqrt{\left(x+1\right)\left(3-x\right)}\right)}\)

                                   \(=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)^2\sqrt{\frac{3-x}{x+1}}}\)

Đặt \(t=\sqrt{\frac{3-x}{x+1}}\Rightarrow\frac{dx}{\left(x+1\right)^2}=-\frac{1}{2}\)

Đổi cận : \(x=-\frac{1}{2}\Rightarrow t=\sqrt{7};x=0\Rightarrow t=\sqrt{3}\)

\(I=-\frac{1}{2}\int\limits^{\sqrt{3}}_{\sqrt{7}}dt=\frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right)\)

NV
20 tháng 4 2020

Câu 3:

Phương trình hoành độ giao điểm:

\(x^3=x^2-4x+4\Leftrightarrow x^3-x^2+4x-4=0\Rightarrow x=1\)

\(x^3=0\Rightarrow x=0\)

\(x^2-4x+4=0\Rightarrow x=2\)

Diện tích hình phẳng:

\(S=\int\limits^1_0x^3dx+\int\limits^2_1\left(x^2-4x+4\right)dx=\frac{7}{12}\)

Câu 4:

Phương trình hoành độ giao điểm:

\(x^3-3x+2=x+2\Leftrightarrow x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-2}\left(x^3-3x+2-x-2\right)dx+\int\limits^2_0\left(x+2-x^3+3x-2\right)dx=8\)

NV
20 tháng 4 2020

Câu 1:

Phương trình hoành độ giao điểm: \(cosx=0\Rightarrow x=\frac{\pi}{2}\)

\(\Rightarrow S=\int\limits^{\frac{\pi}{2}}_0cosxdx-\int\limits^{\pi}_{\frac{\pi}{2}}cosxdx=2\)

Câu 2:

Phương trình hoành độ giao điểm: \(x.e^x=0\Rightarrow x=0\)

\(\Rightarrow S=\int\limits^3_0xe^x-\int\limits^0_{-2}xe^xdx\)

Xét \(I=\int x.e^xdx\Rightarrow\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=xe^x-e^x+C=\left(x-1\right)e^x+C\)

\(\Rightarrow S=\left(x-1\right)e^x|^3_0-\left(x-1\right)e^x|^0_{-2}=2e^3+1-\left[-1+\frac{3}{e^2}\right]=2e^3+2-\frac{3}{e^2}\)

29 tháng 3 2016

Điều kiện :

\(\begin{cases}x^2-4x+5>0\\3+\log_2\left(x^2-4x+5\right)\ge0\\5-\log_2\left(x^2-4x+5\right)\ge0\end{cases}\)

\(\Leftrightarrow x^2-4x+5\le2^5\)

\(\Leftrightarrow2-\sqrt{29}\le x\)\(\le2+\sqrt{29}\)

Đặt  \(\begin{cases}u=\sqrt{3+\log_2\left(x^2-4x+5\right)}\\v=\sqrt{5-\log_2\left(x^2-4x+5\right)}\end{cases}\)  \(\left(v,u\ge0\right)\)

Khi đó ta có hệ phương trình :

\(\begin{cases}u^2+v^2=8\\u+2v=6\end{cases}\)

Giải ra ta được :

\(\begin{cases}u=2\\v=2\end{cases}\) hoặc \(\begin{cases}u=\frac{2}{5}\\v=\frac{14}{5}\end{cases}\)

Từ đó suy ra \(\log_2\left(x^2-4x+5\right)=1\) hoặc \(\log_2\left(x^2-4x+5\right)=\frac{-71}{25}\) và tìm được 4 nghiệm của phương trình