Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2xy\ge-\left(x^2+y^2\right)\to36=5x^2+5y^2+8xy\ge5x^2+5y^2+4\left(-x^2-y^2\right)=x^2+y^2.\)
Dấu bằng xảy ra khi \(x=-y=\pm3\sqrt{2}.\) Vậy giá trị lớn nhất là 36.
x2 - 5x - 2xy + 5y + y2 + 4
= (x2 - 2xy + y2) - (5x - 5y) + 4
= (x2 - xy - xy + y2) - 5.(x - y) + 4
= (x - y)2 - 5.1 + 4
= 1 - 5 + 4
= 0
\(36=5\left(x^2+y^2\right)+8xy\le5\left(x^2+y^2\right)+4\left(x^2+y^2\right)\)
\(\Rightarrow9\left(x^2+y^2\right)\ge36\Rightarrow x^2+y^2\ge4\)
\(S_{min}=4\) khi \(x=y=\pm\sqrt{2}\)
\(36=x^2+y^2+4\left(x+y\right)^2\ge x^2+y^2\)
\(\Rightarrow S_{max}=36\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2=36\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(3\sqrt{2};-3\sqrt{2}\right)\) và hoán vị
1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)
\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)
2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)
Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được :
\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)
Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0
=> A = 1
Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1
ta có \(x^2-2y^2-xy=0\)
<=> \(\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)
<=> \(\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)
<=> \(\left(x+y\right)\left(x-2y\right)=0\)
<=> x-2y=0( vì x+y khác 0)
<=> x=2y
thay vào đề bài ta có
\(Q=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có : \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Mà \(x+y\text{≠}0\) nên \(x-2y=0\Rightarrow x=2y\)
\(\Rightarrow Q=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)