Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
a) Đặt P = 2xy(5x² +3x – z) Với x = 1; y = -1 và z = -2 ta có:
P = 2.1(-1).[5.1².(-1) + 3.1 – (-2)] = -2(-5 + 3 +2) = -2.0 = 0
Vậy P = 0
b) Đặt Q = xy² +y²z³ + z³X4. Với x =1; y = -1 và z = -2, ta có:
Q = 1.(-1)² + (-1)².(-2)³ .14 = 1 – 8 – 8 = -15
Vậy Q = -15.
a) Thế x = 1, y = -1, z = 3 vào biểu thức đã cho:
\(\left[1^2.\left(-1\right)-2.1-2.3\right]1.\left(-1\right)\)
= -9 . (-1)
= 9
Vậy biểu thức có giá trị bằng 9 tại x = 1, y = -1, z = 3.
b) Thế x = 1, y = -1, z = 3 vào biểu thức đã cho:
\(1.\left(-1\right).3+\dfrac{2.1^2.\left(-1\right)}{\left(-1\right)^2+1}\)
= -3 + \(\left(-1\right)\)
= -4
Vậy biểu thức có giá trị bằng -4 tại x = 1, y = -1, z = 3.
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)3.14
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
5rxdjexjgntrujnxgr6jexs6ue6thfydjytudcjxtyu45yuej8tuxr5ts
a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)
\(=-2x^4y^3+4x^3y^4-10x^2y^5\)
b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)
\(=-2x^4+6x^3+2x^2-2x\)
c) Ta có: \(3x^2\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)
\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)
e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)
\(=-4x^3y^2+8x^2y^2-12x^2y\)
f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^3y\)
a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)
b/ Do \(x=19\Rightarrow20=x+1\)
\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)
\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)
\(B=20-x=20-19=1\)
c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
\(2xy\left(5x^2y+3x-z\right)\)
\(=2.1.-1.\left(5.1^2.-1+3.1-\left(-2\right)\right)\)
\(=-2.\left(-5+3-\left(-2\right)\right)\)
\(=-2.\left(-2-\left(-2\right)\right)\)
\(=-2.0=0\)
A ) =2.0=0