Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán 9 mà?
\(A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\) (1)
+)A = 0 thì \(x=-\frac{1}{2}\)
+)A khác 0 thì (1) là pt bậc 2.(1) có nghiệm tức là \(\Delta'=1-A\left(2A-1\right)\ge0\)
\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow-\frac{1}{2}\le A\le1\)
Thay vào giải x
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)
\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)
Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)
Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)
\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết
Vậy \(\sqrt{7}\) không phải là số hữu tỉ
\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)
Ta có:
2x+xy=4
=> xy=4-2x
A=x2y=x.(xy)
=> A=x(4-2x)=4x-2x2
=> A=2-2+4x-2x2 = 2-2(x2-2x+1)
=> A=2-2(x-1)2
Ta thấy: (x-1)2\(\ge\)0 với mọi x
=> A \(\le\)2 với mọi x
=> Giá trị lớn nhất của A là 2
Đạt được khi x-1=0 hay x=1 và y=2
Để 2x^2 + 5 / 2x^2 +1 có GTLN thì 2x^2 +1 phải có GTNN . => Ta có : x^2 > 0 => x = 0 => 2x^2 = 0 ( để có GTNN) => 2x^2 + 1 = 1
=> Vậy , GNLN của 2x^2 + 5 / 2x^2 +1 là 5
Câu 1: giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ