Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
Tính giá trị của đa thức:
P(x) = x^{2017}-2016x^{2016}-2016x^{2015}-...--2016x^2^-2016x+1 tại x=2017
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)
Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)
=> x = 1/2
Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)
=> y = 5/6
Lại có x + y + z = 1/2
=> 1/2 + 5/6 + z = 1/2
=> 5/6 + z = 0
=> z = -5/6
Khi đó A = 2016X + y2017 + z2017
= 2016.1/2 + (5/6)2017 - (5/6)2017
= 1008
Vậy A = 1008
\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3
TH1 : Ta thay đa thức trên có x = -1
\(3.\left(-1\right)^2+5=3.1+5=8\)
TH2 : Ta thay đa thức trên có x = 0
\(3.0^2+5=3.0.5=0\)
TH3 : Ta thay đa thức trên có x = 3
\(3.3^2+5=3.9+5=27+5=32\)
Ta KL đc : R luôn dương với mọi giá trị x
Tổng các hệ số của 1 đa thức f(x) bất kì bằng giá trị của đa thức đó tại x=1
Vậy tổng các hệ số của đa thức
f(x)=(8x2+5x-14)2015.(3x3-10x2+6x+2)2016
=f(1)=(8.12+5.1-14)2015.(3.13-10.12+6.1+2)2016=(-1)2015.12016=(-1).1=-1
Nếu -1 mà có mũ thì mũ bao nhiêu kết quả cũng bằng -1
Ta có : \(-1^{2016}+-1^{2017}+1\)
\(=-1+\left(-1\right)+1\)
\(=-2+1\)
\(=-1\)
Đúng 100% Đúng 100% Đúng 100%