K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

Câu hỏi của Nguyễn Minh Vũ - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo ở link trên.

16 tháng 6 2017

Ta có:

f ( 1 ) = \(a_0+a_1+....+a_{2017}\)

mà f ( x) = \(\left(x+2\right)^{2017}\)

=> \(S=f\left(1\right)=3^{2017}\)

18 tháng 6 2017

Hiếu , tớ hỏi này tại sao lại là f(-1) hả ?

3 tháng 5 2017

a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5

=-x4-2x3-2x-5

Bậc của đa thức:4

Hệ số cao nhất:-1

Hệ số tự do:-5

N(x)=(-x4+2x4)+2x3-x2+3x+5

=x4+2x3-x2+3x+5

Bậc của đa thức:4

Hệ số cao nhất:1

Hệ số tự do:5

b)Thay x=-1 vào N(x) ta có:

(-1)4+2.(-1)3-(-1)2+3.(-1)+5

=1-2-1-3+5

=0

c)P(x)-M(x)=N(x)

=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)

=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)

=-x2+x

d)P(x)=-x2+x=-x(x-1)

Cho P(x)=0=>-x(x-1)=0

<=>-x=0 hoặc x-1=0

<=>x=0 hoặc x=1

Vậy...

3 tháng 4 2017

bạn chỉ cần rút gọn những đa thức có phần biến giống nhau rồi khi đó bạn thấy phần biến nào có số mũ lớn rồi dần từ trên xuống dưới mình giải hết thì mỏi tay viết lắm :D nên chỉ gợi ý được thôi nếu biết thì sau này vânj dụng dễ dàng thì bài này bạn làm được tốt luôn ;D

13 tháng 4 2017

BT1:

a, Sắp xếp từ lớn đến bé:

\(M_{\left(x\right)}=-x^6+x^4-4\times x^3+x^2-5\)

\(N_{\left(x\right)}=2\times x^5-x^4-x^3+x^2+x-1\)

câu b và câu c bạn áp dụng tính đa thức cột dọc là được nhưng câu c mình gợi ý : \(M_{\left(x\right)}-\left[-N_{\left(x\right)}\right]\)

Tích mình nha!haha

24 tháng 1 2020

\(f\left(x\right)=\left(x+2\right)^{2017}\Rightarrow f\left(1\right)=3^{2017}\)

hay \(a_{2017}+a_{2016}+...+a_2+a_1+a_0=3^{2017}\)(1)

và \(f\left(x\right)=\left(x+2\right)^{2017}\Rightarrow f\left(-1\right)=1^{2017}=1\)

hay \(-a_{2017}+a_{2016}+...+a_2-a_1+a_0=1\)(2)

Lấy (1) + (2), ta được:

\(2S=3^{2017}+1\)

\(\Rightarrow S=\frac{3^{2017}+1}{2}\)

Vậy \(S=a_0+a_2+a_4+...+a_{2014}+a_{2016}=\frac{3^{2017}+1}{2}\)

11 tháng 8 2020

Nhắc lại một chút :

Nếu hai đại lượng tỉ lệ nghịch với nhau thì :

  • Tích hai giá trị tương ứng của chúng luôn không đổi ( = hệ số tỉ lệ )
  • Tỉ số hai giá trị bất kì của đại lượng này = nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia

Ta có x và y là hai đại lượng tỉ lệ nghịch

x1, x2 là hai giá trị của x

y1, y2 là hai giá trị của y

Tích hai giá trị tương ứng của chúng luôn không đổi

tức là x1y1 = x2y2 ; biết x1 = 6, x2 = -9

=> 6y1 = -9y2 => \(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}\)và y1 - y2 = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{y_1}{\frac{1}{6}}=\frac{y_2}{-\frac{1}{9}}=\frac{y_1-y_2}{\frac{1}{6}-\left(-\frac{1}{9}\right)}=\frac{10}{\frac{5}{18}}=36\)

\(\Rightarrow\hept{\begin{cases}y_1=36\cdot\frac{1}{6}=6\\y_2=36\cdot\left(-\frac{1}{9}\right)=-4\end{cases}}\)