Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) Đặt \(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(Min_A=4\Leftrightarrow x=1\)
b) Đặt \(B=x^2+y^2+2x+6y+12=\left(x+2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+2\ge2\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)
Vậy \(Min_B=2\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}\)
c) Đặt \(C=5x-x^2=-\left(x^2-5x+6,25\right)+6,25=-\left(x-2,5\right)^2+6,25\le6,25\)
Dấu "=" xảy ra : \(\Leftrightarrow x-2,5=0\Leftrightarrow x=2,5\)
Vậy \(Max_C=6,25\Leftrightarrow x=2,5\)
d) Sửa đề:
Đặt \(D=-x^2-4x-7=-\left(x^2+4x+4\right)-3=-\left(x+2\right)^2-3\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_D=-3\Leftrightarrow x=-2\)
a)x2-2x+5
=x2-2x+1+4
=(x+1)2+4
Vì (x+1)2\(\ge\)0 nên (x+1)2\(\ge\)4
Dấu "=" xảy ra khi x+1=0\(\Leftrightarrow\)x=-1
Vậy GTNN của BT là 4 khi x=1
b)(x2+2x+1)+(y2+6y+9)+2
=(x+1)2+(y+3)2+2
Vì (x+1)2+(y+3)2\(\ge\)0 nên (x+1)2+(y+3)2+2\(\ge\)2
Dấu "=" xảy ra khi x+1=0và y+3=0 <=> x=-1 và x=-3
Vậy GTNN của BT là 2 khi x=1 và x=3
c)5x – x^2
= -(x^2 - 5x + 25/4 ) + 25/4
= -(x-5/2)^2 + 25/4 ≤ 25/4 ∀x
vậy GTLN = 25/4 khi x - 5/2 = 0 => x = 5/2
d)=-(x2+4x+7)
=-(x2+4x+4+3)
=-(x2+4x+4)-3
=-(x+2)2-3
Vì (x+2)2\(\ge\)0 nên -(x+2)2\(\le\)0 =>-(x+2)2-3\(\le\)-3
Dấu "=" xảy ra khi x+2=0<=>x=-2
Vậy GTLN của BT là -3 KHI X=-2
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
lớp 8 thì mk chịu
\(A=x^2+x^4+x^6+x^8+...+x^{100}\)
Với x = -1
\(A=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+....+\left(-1\right)^{100}\)
\(A=1+1+....+1\)
\(A=50.1=50\)