K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

\(2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\)

\(A=2A-A=1-\left(\frac{1}{2}\right)^{100}\)

14 tháng 3 2017

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{100}\left(1+2+3+....+100\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+.....+\frac{1}{100}.\frac{100\left(100+1\right)}{2}\)

\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{100+1}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{101}{2}\)

\(=\frac{2+3+4+....+101}{2}\)

\(=\frac{\frac{101\left(101+1\right)}{2}-1}{2}=5150.5\)

15 tháng 3 2017

\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{100}\left(1+2+3+....+100\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{100}.\frac{100.101}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{101}{2}\)

\(=\frac{2+3+4+....+101}{2}\)

\(=\frac{\frac{101.102}{2}-1}{2}\)

\(=2575\)

Vậy \(S=2575\)

26 tháng 3 2017

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)

\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)

\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)

\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)

3 tháng 2 2017

lơp 6  ko bt

16 tháng 7 2016

\(P=\left(-0,5-\frac{3}{5}\right):\left(-3\right)+\frac{1}{3}-\left(-\frac{1}{6}\right):\left(-2\right)\)

\(P=\left(-1,1\right):\left(-3\right)+\frac{1}{3}+\frac{1}{6}:\left(-2\right)\)

\(P=\frac{11}{30}+\frac{1}{3}+\left(-\frac{1}{12}\right)\)

\(P=\frac{37}{60}\)

\(Q=\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right).2\frac{2}{17}\right]\)

\(Q=\left(-0,928\right):\frac{4}{7}:\left[\left(-\frac{119}{36}\right).2\frac{2}{17}\right]\)

\(Q=\left(-1,624\right):\left(-\frac{245}{36}\right)\)

\(Q=\frac{1044}{4375}\)

A=\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{2017.2019}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)..........\left(\frac{2017.2019+1}{2017.2019}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.............\frac{4072324}{2017.2019}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...................\frac{2018^2}{2017.2019}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{\left(2.3.4..........2018\right).\left(2.3.4............2018\right)}{\left(1.2.3............2017\right).\left(3.4.5..........2019\right)}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2018.2}{1.2019}\right)=\frac{2018.2}{2.2019}=\frac{2018}{2019}\)

Vậy \(A=\frac{2018}{2019}\)

Chúc bn học tốt

\(A:\frac{1}{2}=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{2017.2019+1}{2017.2019}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}......\frac{2018^2}{2017.2019}\)

\(=\frac{2.2.3.3.4.4.....2018.2018}{1.3.2.4.3.5....2017.2019}\)

\(=\frac{2.3.4.....2018}{1.2.3.4.....2017}.\frac{2.3.4....2018}{3.4.5.....2019}\)

\(=2018.\frac{2}{2019}\)

\(=\frac{4036}{2019}\)

\(\Rightarrow A=\frac{4036}{2019}.\frac{1}{2}\)

\(A=\frac{2018}{2019}\)

\(P=\left(\dfrac{-1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{6}:2\)

\(=\left(\dfrac{1}{2}+\dfrac{3}{5}\right):3+\dfrac{1}{3}-\dfrac{1}{12}\)

\(=\dfrac{11}{10}\cdot\dfrac{1}{3}+\dfrac{1}{4}\)

\(=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{22}{60}+\dfrac{15}{60}=\dfrac{37}{60}\)

\(Q=\left(\dfrac{2}{25}-\dfrac{126}{125}\right)\cdot\dfrac{7}{4}:\left[\dfrac{-119}{36}\cdot\dfrac{36}{17}\right]\)

\(=\dfrac{-116}{125}\cdot\dfrac{7}{4}:\left(-7\right)\)

\(=\dfrac{116}{125}\cdot\dfrac{7}{4}\cdot\dfrac{1}{7}=\dfrac{29}{125}\)