Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
\(\Rightarrow x^3+x^2y-2x^2-xy-y^2+2y+y+x+2020\)
\(x^2.\left(x+y-2\right)-y\left(x+y-2\right)+y+x+2020\)(1)
Thay x+y-2=0 vào (1) , ta được :
\(x^2.0-y.0+y+x+2020\\ =0+y+x+2020\)
\(=x+y+2022-2\\ =\left(x+y-2\right)+2022\\ \)(2)
Thay x+y-2 vào (2), ta được
\(=0+2022=2022\)
_ Tham khảo thôi ậ, nếu sai thì mong mn thông cảm_
_# yum #_
Ta có:
M +N +P = (7x^2y^2 -2xy -5y^3 -y^2 +5x^4) +(-x^2y^2 -4xy +3y^3 -3y^2 +2x^4) +(-3x^2y^2 +6xy +2y^3 +6y^2 +7)
= 7x^2y^2 -2xy -5y^3 -y^2 +5x^4 -x^2y^2 -4xy +3y^3 -3y^2 +2x^4 -3x^2y^2 +6xy +2y^3 +6y^2 +7
= (7x^2y^2 -x^2y2 -3x^2y^2) +(-2xy -4xy +6xy) +(-5y^3 +3y^3 +2y^3) +(-y^2 -3y^2 +6y^2) +(5x^4 +2x^4) + 7
= 3x^2y^2 + 2y^2 + 7x^4 + 7
x^2≥0;y^2≥0⇒3x^2y^2≥0 (1)
y^2≥0⇒2y^2≥0(2)
x4≥0⇒7x4≥0 (3)
7 > 0 (4)
Từ (1), (2), (3) và (4) => 3x^2y^2+2y^2+7x^4+7≥0
Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y
Lời giải:
a) $P(x)= 5x+x^3y-2xy+4x^3y+3x^2y-10x$
$=(x^3y+4x^3y)+3x^2y-2xy+(5x-10x)$
$=5x^3y+3x^2y-2xy-5x$
$Q(x)=4x-5x^3y+2x^2y-x^3y+6xy+11x^3-8x$
$=-6x^3y+2x^2y+11x^3+6xy-4x$
$P(x)-Q(x)=11x^3y+x^2y-8xy-x-11x^3$
Bậc của $P(x)-Q(x)$ là $3+1=4$
b)
$P(x)+Q(x)=-x^3y+5x^2y+4xy-9x+11x^3$
$P(x)-Q(x)$ đã thu gọn ở phần a.
Ta có: \(2x^3+3x^2y-2xy-3y^2+2016\)
\(=x^2\left(2x+3y\right)-y\left(2x+3y\right)+2016\)
\(=x^2\cdot0-y\cdot0+2016\)
=2016
`2x^3+3x^2y-2xy-3y^2+2016`
`=x^2(2x+3y)-y(2x+3y)+2016`
Mà `2x+3y=0`
`=>2x^3+3x^2y-2xy-3y^2+2016=0+0+2016=2016`