Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(xyz)+(xyz)^2+(xyz)^3+...+(xyz)^100
=(-1)+1+(-1)+1+...+(-1)+1
=0
b) Có x+y+z=0 => \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
=> B = \(-xyz\) = -2
a) Có x + y + 1 =0 => x + y = -1
\(x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
= \(\left(x+y\right)\left(x^2-y^2\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)
= \(\left(x+y\right)^2\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)
Thay x + y = -1, ta có:
A = x - y - x + y - 2 + 3
= 1
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)