Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_216=log_22^4=4\)
\(log_32187=log_33^7=7\)
\(log_{10}\dfrac{1}{100}=log_{10}10^{-2}=-2\)
\(log10000=log10^4=4\)
\(9^{log_312}=3^{2log_312}=3^{log_3144}=144\)
\(8^{log_25}=2^{3log_25}=2^{log_2125}=125\)
\(\left(\dfrac{1}{25}\right)^{log_5\dfrac{1}{3}}=5^{-2log_5\dfrac{1}{3}}=5^{log_59}=9\)
\(\left(\dfrac{1}{4}\right)^{log_23}=2^{-2log_23}=2^{log_2\dfrac{1}{9}}=\dfrac{1}{9}\)
a) Ta có:
−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤2(1+cosx+1≤3
Vậy y ≤ 3, ∀ x ∈ R
Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)
Vậy ymax = 3 khi x = k2π
b) Ta có:
Với mọi x ∈ R, ta có:
sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1
Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z
a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2
Vậy hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là
Sk= 2 + 5 + 8 + …+ 3k – 1 =
Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh
Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =
Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.
Đặt vế trái bằng Sn.
Giả sử hệ thức đúng với n = k ≥ 1, tức là
Ta phải chứng minh .
Thật vậy, từ giả thiết quy nạp, ta có:
= (điều phải chứng minh)
Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*
c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.
Đặt vế trái bằng Sn.
Giả sử hệ thức c) đúng với n = k ≥ 1, tức là
Sk = 12 + 22 + 32 + …+ k2 =
Ta phải chứng minh
Thật vậy, từ giả thiết quy nạp ta có:
Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)
(đpcm)
Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*
Đặt vế trái bằng \(S_n\).
Với n = 1. Vế trái chỉ có một số hạng bằng 2, vế phải bằng \(\dfrac{1.\left(3.1+1\right)}{2}=2\).
Vậy \(VP=VT\). Điều cần chứng minh đúng với n = 1.
Giả sử có \(S_k=\dfrac{k\left(3k+1\right)}{2}\). Ta phải chứng minh:
\(S_{k+1}=\dfrac{\left(k+1\right)\left[3\left(k+1\right)+1\right]}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{2}\).
Thật vậy ta có:
\(S_{k+1}=S_k+\left[3\left(k+1\right)-1\right]\)\(=\dfrac{k\left(3k+1\right)}{2}+\left[3\left(k+1\right)-1\right]\)
\(=\dfrac{k\left(3k+1\right)}{2}+\dfrac{2\left(3k+2\right)}{2}\)\(=\dfrac{3k^2+7k+4}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{ }\).
Vậy \(S_n=\dfrac{n\left(3n+1\right)}{2}\).
b) Đặt vế trái bằng \(S_n\).
Với n = 1.
VT = 3; VP \(=\dfrac{1}{2}\left(3^2-3\right)=3\).
Điều cần chứng minh đúng với n = 1.
Giả sử \(S_k=\dfrac{1}{2}\left(3^{k+1}-3\right)\).
Ta cần chứng minh: \(S_{k+1}=\dfrac{1}{2}\left(3^{k+1+1}-3\right)=\dfrac{1}{2}\left(3^{k+2}-3\right)\).
Thật vậy:
\(S_{k+1}=S_k+3^{k+1}=\dfrac{1}{2}\left(3^{k+1}-3\right)+3^{k+1}\)
\(=\dfrac{1}{2}\left(3^{k+1}-3+2.3^{k+1}\right)=\dfrac{1}{2}\left(3.3^{k+1}-3\right)\)\(=\dfrac{1}{2}\left(3^{k+2}-3\right)\).
Vậy \(S_n=\dfrac{1}{2}\left(3^{n+1}-3\right)\).
\(a,log_272-\dfrac{1}{2}\left(log_23+log_227\right)\\ =log_272-\dfrac{1}{2}log_2\left(3\cdot27\right)\\ =log_272-log_2\left(81\right)^{\dfrac{1}{2}}\\ =log_272-log_29\\ =log_2\dfrac{72}{9}\\ =log_28\\ =3\)
\(b,5^{log_240-log_25}\\ =5^{log_2\dfrac{40}{5}}\\ =5^{log_28}\\ =5^3\\ =125\)
\(c,3^{2+log_92}\\ =3^{log_9\left(81\cdot2\right)}\\ =3^{\dfrac{1}{2}log_3162}\\ =\left(162\right)^{\dfrac{1}{2}}\\ =\sqrt{162}\\ =9\sqrt{2}\)