K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

\(a,log_272-\dfrac{1}{2}\left(log_23+log_227\right)\\ =log_272-\dfrac{1}{2}log_2\left(3\cdot27\right)\\ =log_272-log_2\left(81\right)^{\dfrac{1}{2}}\\ =log_272-log_29\\ =log_2\dfrac{72}{9}\\ =log_28\\ =3\)

\(b,5^{log_240-log_25}\\ =5^{log_2\dfrac{40}{5}}\\ =5^{log_28}\\ =5^3\\ =125\)

\(c,3^{2+log_92}\\ =3^{log_9\left(81\cdot2\right)}\\ =3^{\dfrac{1}{2}log_3162}\\ =\left(162\right)^{\dfrac{1}{2}}\\ =\sqrt{162}\\ =9\sqrt{2}\)

NV
12 tháng 1 2024

\(log_216=log_22^4=4\)

\(log_32187=log_33^7=7\)

\(log_{10}\dfrac{1}{100}=log_{10}10^{-2}=-2\)

\(log10000=log10^4=4\)

\(9^{log_312}=3^{2log_312}=3^{log_3144}=144\)

\(8^{log_25}=2^{3log_25}=2^{log_2125}=125\)

\(\left(\dfrac{1}{25}\right)^{log_5\dfrac{1}{3}}=5^{-2log_5\dfrac{1}{3}}=5^{log_59}=9\)

\(\left(\dfrac{1}{4}\right)^{log_23}=2^{-2log_23}=2^{log_2\dfrac{1}{9}}=\dfrac{1}{9}\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

3 tháng 4 2017

a) Ta có:

−1≤cosx≤1,∀x∈R⇔0≤1+cosx≤2⇔0≤2(1+cosx)≤4⇔1≤√2(1+cosx+1≤3−1≤cos⁡x≤1,∀x∈R⇔0≤1+cos⁡x≤2⇔0≤2(1+cos⁡x)≤4⇔1≤2(1+cos⁡x+1≤3

Vậy y ≤ 3, ∀ x ∈ R

Dấu “ = “ xảy ra ⇔ cos x = 1 ⇔ x = k2π (k ∈ Z)

Vậy ymax = 3 khi x = k2π

b) Ta có:

Với mọi x ∈ R, ta có:

sin(x−π6)≤1⇔3sin(x−π6)≤3⇔3sin(x−π6)−2≤1⇔y≤1sin⁡(x−π6)≤1⇔3sin⁡(x−π6)≤3⇔3sin⁡(x−π6)−2≤1⇔y≤1

Vậy ymax = 1 khi sin(x−π6)=1⇔x=2π3+k2π,k∈Z


9 tháng 4 2017

a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2

Vậy hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là

Sk= 2 + 5 + 8 + …+ 3k – 1 =

Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh

Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =

Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*

b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.

Đặt vế trái bằng Sn.

Giả sử hệ thức đúng với n = k ≥ 1, tức là

Ta phải chứng minh .

Thật vậy, từ giả thiết quy nạp, ta có:

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*

c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n = k ≥ 1, tức là

Sk = 12 + 22 + 32 + …+ k2 =

Ta phải chứng minh

Thật vậy, từ giả thiết quy nạp ta có:

Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)

(đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*



18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

24 tháng 5 2017

Đặt vế trái bằng \(S_n\).
Với n = 1. Vế trái chỉ có một số hạng bằng 2, vế phải bằng \(\dfrac{1.\left(3.1+1\right)}{2}=2\).
Vậy \(VP=VT\). Điều cần chứng minh đúng với n = 1.
Giả sử có \(S_k=\dfrac{k\left(3k+1\right)}{2}\). Ta phải chứng minh:
\(S_{k+1}=\dfrac{\left(k+1\right)\left[3\left(k+1\right)+1\right]}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{2}\).
Thật vậy ta có:
\(S_{k+1}=S_k+\left[3\left(k+1\right)-1\right]\)\(=\dfrac{k\left(3k+1\right)}{2}+\left[3\left(k+1\right)-1\right]\)
\(=\dfrac{k\left(3k+1\right)}{2}+\dfrac{2\left(3k+2\right)}{2}\)\(=\dfrac{3k^2+7k+4}{2}=\dfrac{\left(k+1\right)\left(3k+4\right)}{ }\).
Vậy \(S_n=\dfrac{n\left(3n+1\right)}{2}\).

24 tháng 5 2017

b) Đặt vế trái bằng \(S_n\).
Với n = 1.
VT = 3; VP \(=\dfrac{1}{2}\left(3^2-3\right)=3\).
Điều cần chứng minh đúng với n = 1.
Giả sử \(S_k=\dfrac{1}{2}\left(3^{k+1}-3\right)\).
Ta cần chứng minh: \(S_{k+1}=\dfrac{1}{2}\left(3^{k+1+1}-3\right)=\dfrac{1}{2}\left(3^{k+2}-3\right)\).
Thật vậy:
\(S_{k+1}=S_k+3^{k+1}=\dfrac{1}{2}\left(3^{k+1}-3\right)+3^{k+1}\)
\(=\dfrac{1}{2}\left(3^{k+1}-3+2.3^{k+1}\right)=\dfrac{1}{2}\left(3.3^{k+1}-3\right)\)\(=\dfrac{1}{2}\left(3^{k+2}-3\right)\).
Vậy \(S_n=\dfrac{1}{2}\left(3^{n+1}-3\right)\).