Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{23}x\left(\frac{17}{26}+\frac{9}{26}\right)\)=\(\frac{5}{23}x\frac{26}{26}\)=\(\frac{5}{23}x1\)=\(\frac{5}{23}\)
\(\frac{5}{23}\)x \(\frac{17}{26}+\frac{5}{23}\)x \(\frac{9}{26}\)
=\(\frac{5}{23}\left(\frac{17}{26}+\frac{9}{26}\right)\)
=\(\frac{5}{23}\)x \(\frac{26}{26}\)
=\(\frac{5}{23}\)x 1
=\(\frac{5}{23}\)
A = (4+\(\frac{1}{5}\)) . \(\frac{18}{19}\)+ (2+\(\frac{8}{5}\)) . \(\frac{21}{5}\)
A= \(\frac{21}{5}\).18/19 + 18/5 . 21/5
A= 21/5 (18/19 + 18/5)
A= 21/5 . 432/95
A= 9288/95
b= 25/2. (3+2/7) - 23/7. (5 + 1/2)
b= 25/2 . 23/7 - 23/7 . 11/2
b= 23/7 (25/2 -11/2)
b=23/7 . 7
b= 23
a) \(-\frac{1}{4}.13\frac{9}{11}-0,25.6\frac{2}{11}\)
\(=-\frac{1}{4}.13\frac{9}{11}-\frac{1}{4}.6\frac{2}{11}\)
\(=-\frac{1}{4}\left(13\frac{9}{11}+6\frac{2}{11}\right)\)
\(=-\frac{1}{4}.20\)
\(=-5\)
b) \(B=\frac{-5}{6}.\frac{4}{19}+\frac{-7}{12}.\frac{4}{19}-\frac{40}{57}\)
\(=\frac{4}{19}\left(\frac{-5}{6}+\frac{-7}{12}\right)-\frac{40}{57}\)
\(=\frac{4}{19}.\frac{-17}{12}-\frac{40}{57}\)
\(=\frac{-17}{57}-\frac{40}{57}\)
\(=-1\)
c) \(\frac{3}{7}.\frac{9}{26}-\frac{1}{14}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{3}{7}.\frac{9}{26}-\frac{1}{2}.\frac{1}{7}.\frac{1}{13}-\frac{1}{7}\)
\(=\frac{1}{7}\left(3.\frac{9}{26}-\frac{1}{2}.\frac{1}{13}-1\right)\)
\(=\frac{1}{7}.0\)
\(=0\)
d) \(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
\(=\left(\frac{4}{9}+6\frac{5}{9}\right):\left(-\frac{1}{7}\right)\)
\(=7:\left(-\frac{1}{7}\right)\)
\(=-49\)
Để nhân các phân số này, ta chỉ cần nhân tử số với nhau và mẫu số với nhau:
\[
\frac{1}{3} \times \frac{2}{5} \times \frac{3}{7} \times \frac{4}{9} \times \frac{5}{11} \times \frac{6}{15} \times \frac{7}{15} \times \frac{8}{15} \times \frac{9}{19} \times \frac{10}{21} \times \frac{11}{32} \times \frac{12}{25} \times \left( \frac{126}{252} - 4 \right)
\]
Sau đó, ta thực hiện các phép tính:
1. Nhân tử số:
\[1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12 \times 126 = 997920\]
2. Nhân mẫu số:
\[3 \times 5 \times 7 \times 9 \times 11 \times 15 \times 15 \times 15 \times 19 \times 21 \times 32 \times 25 \times 252 = 7621237680\]
Kết quả là:
\[\frac{997920}{7621237680}\]
Bây giờ, ta có thể rút gọn phân số này bằng cách chia tử số và mẫu số cho 160:
\[ \frac{997920}{7621237680} = \frac{997920 ÷ 160}{7621237680 ÷ 160} = \frac{6237}{47695230} \]
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt
a)\(A=\frac{17}{23}.\frac{8}{16}.\frac{23}{17}.\left(-80\right).\frac{3}{4}\)
\(A=\left(\frac{17}{23}.\frac{23}{17}\right).\left(\frac{8}{16}.\frac{3}{4}\right).\left(-80\right)\)
\(A=\frac{3}{8}.\left(-80\right)\)
\(A=-30\)
b)\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)
\(C=0\)
a) \(x-\frac{10}{3}=\frac{7}{15}\cdot\frac{3}{5}\) b) \(x+\frac{3}{22}=\frac{27}{121}\cdot\frac{11}{9}\)
\(\Leftrightarrow x-\frac{10}{3}=\frac{7}{25}\) \(\Leftrightarrow x+\frac{3}{22}=\frac{3}{11}\)
\(\Rightarrow x=\frac{7}{25}+\frac{10}{3}\) \(\Rightarrow x=\frac{3}{11}-\frac{3}{22}\)
\(x=\frac{271}{75}\) \(x=\frac{3}{22}\)
c) \(\frac{8}{23}.\frac{46}{24}-x=\frac{1}{3}\) d) \(1-x=\frac{49}{65}.\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}-x=\frac{1}{3}\) \(\Leftrightarrow1-x=\frac{7}{13}\)
\(\Rightarrow x=\frac{2}{3}-\frac{1}{3}\) \(\Rightarrow x=1-\frac{7}{13}\)
\(x=\frac{1}{3}\) \(x=\frac{6}{13}\)
\(A=\frac{17}{23}\cdot\frac{8}{16}\cdot\frac{23}{17}\cdot\left(-80\right)\cdot\frac{3}{4}\)\(=\frac{17\cdot4\cdot2\cdot23\cdot16\cdot\left(-5\right)\cdot3}{23\cdot16\cdot17\cdot4}\)
=> \(A=\frac{2\cdot\left(-5\right)\cdot3}{1}=-30\)
\(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{7}{12}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\cdot0=0\)
a,\(\frac{21}{25}.\frac{11}{9}.\frac{5}{7}=\frac{21.11.5}{25.9.7}=\frac{3.7.11.5}{5^2.3^2.7}=\frac{11}{5.3}=\frac{11}{15}\)
b,\(\frac{5}{23}.\frac{17}{26}+\frac{5}{23}.\frac{9}{26}=\frac{5}{23}.\left(\frac{17}{26}+\frac{9}{26}\right)=\frac{5}{23}.1=\frac{5}{23}\)
c, \(\left(\frac{3}{29}-\frac{1}{5}\right).\frac{29}{3}=\frac{3}{29}.\frac{29}{3}-\frac{1}{5}.\frac{29}{3}=1-\frac{29}{15}=-\frac{14}{15}\)
a , \(\frac{21}{25}\times\frac{11}{9}\times\frac{5}{7}\)
\(=\frac{21\times11\times5}{25\times9\times7}\)
\(=\frac{3\times7\times11\times5}{5\times5\times3\times3\times7}\)
\(=\frac{11}{5\times3}\)
\(=\frac{11}{15}\)
b , \(\frac{5}{23}\times\frac{17}{26}+\frac{5}{23}\times\frac{9}{26}\)
\(=\frac{5}{23}\times\left(\frac{17}{26}+\frac{9}{26}\right)\)
\(=\frac{5}{23}\times\frac{26}{26}\)
\(=\frac{5}{23}\times1\)
\(=\frac{5}{23}\)
c , \(\left(\frac{3}{29}-\frac{1}{5}\right)\times\frac{29}{3}\)
\(=\frac{3}{29}\times\frac{29}{3}-\frac{1}{5}\times\frac{29}{3}\)
\(=1-\frac{29}{15}\)