K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{2}{3}+\dfrac{3}{4}\cdot\dfrac{-4}{9}=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}=\dfrac{100}{300}\)

\(B=\dfrac{25}{11}\cdot\dfrac{13}{12}\cdot\dfrac{-11}{5}=\dfrac{-65}{12}=\dfrac{-1625}{300}\)

\(C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\cdot\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\cdot\dfrac{-2}{5}=\dfrac{-22}{100}=\dfrac{-11}{50}=\dfrac{-66}{300}\)

Vì -1625<-66<100

nên B<C<A

11 tháng 3 2016

Xin lỗi! Mình mới học lớp 5 thôi à!

26 tháng 6 2016

-0.875;-5/6;-1/6;0;0.3;;4/13

13 tháng 8 2016

1

theo thứ tự lớn dần: -5/3 ;  -0,875  ;  -5/6  ;  0,3   ;  4,13

 

13 tháng 8 2016

2. 

a) 4/5<1

1<1,1

=> 4/5<1,1

b) -500<0

0<0,001

=> -500<0,001

 

Câu 3: 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
Suy ra: BA=BE

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

15 tháng 3 2022

giúp với

2 tháng 10 2016

a)

  • Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)

Vậy MinB=3 khi \(1\le x\le4\)

  • Áp dụng tiếp Bđt kia ta có:

\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)

\(\Rightarrow C\ge1\)

Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)

Vậy MinC=1 khi \(1993\le x\le1994\)

  • Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)

\(\Rightarrow x^2+\left|y-2\right|\ge0\)

\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)

\(\Rightarrow D\ge-5\)

Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)

Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)

b)Ta thấy:

\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow C\ge17,5\)

Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)

\(\Rightarrow M\ge1\)

Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)

Vậy MinM=1 khi \(2001\le x\le2002\)

3 tháng 10 2016

Thankshaha