K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Rightarrow\)(x3+y3)+(x2+4xy+y2)

\(\Rightarrow\)(x+y)3+(x+y)2

\(\Rightarrow\)23+22

\(\Rightarrow\)=\(12\)

29 tháng 10 2017

Tính giá trị của biểu thức

(x^3+y^3)-(x^2+y^2)+4xy biet x+y=2

=> = .........

18 tháng 7 2015

Vt = (x - y)^2 + 4xy = x^2 -2xy + y^2 + 4xy = x^2 +2xy+ y^2 = ( x+y)^2 = VP 

=> ĐPCM 

b, (x + y)^2 = ( x - y)^2 + 4xy = 5^2 + 4.3 = 25 + 12 = 37

18 tháng 7 2015

VT là vế trái 

Vp là vế phải 

DPCM là điều phải chứng minh

21 tháng 7 2015

a)

VT=(x-y)2+4xy=x2-2xy+y2+4xy=x2+2xy+y2=(x+y)2=VP

=> (x-y)2+4xy=(x+y)2

b) (x+y)2=x2+2xy+y2

=x2-2xy+y2+4xy

=(x-y)2+4xy

=52+4.3

=25+12

=37

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

25 tháng 7 2019

a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=7^3+2\left(x^2+2xy+y^2\right)\)

\(=343+2\left(x+y\right)^2\)

\(=343+2.7^2\)

\(=343+98=441\)

25 tháng 7 2019

b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)

\(=\left(-5\right)^3-\left(x-y\right)^2\)

\(=-125-\left(-5\right)^2\)

\(=-125-25=-150\)

10 tháng 8 2017

\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)

\(A=125-15xy-50+4xy+15xy-4xy+15+10\)

\(A=100\)

11 tháng 6 2016

Viết lại : 

a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)

b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)

11 tháng 6 2016

a) M=(x+y)3+2x2+4xy+2y2

     M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539

b)N=(x-y)3-x2+2xy-y2

    N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150

28 tháng 10 2016

m=(x+y).(x^2+xy+y^2)-(x+y)2

m=(x+y).(x^2+xy+y^2-x-y)

1 tháng 9 2020

                Bài làm :

Ta có :

\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\):

\(Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)

\(Q=\left(x^3+y^3+3x^2y+3xy^2\right)-\left(2x^2+2y^2+4xy\right)+3\left(x+y\right)+10\)

\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)

Thay x+y=5 vào biểu thức trên ; ta được :

\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)

Vậy Q=100

1 tháng 9 2020

\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(\Leftrightarrow Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)

\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)

\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)

Thay x + y = 5 vào pt ta được :

\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)

Vậy Q = 100 <=> x + y = 5

25 tháng 9 2020

1. x( x - 3 ) + y( y - 3 ) + 2xy - 35

= x2 - 3x + y2 - 3y + 2xy - 35

= ( x2 + 2xy + y2 ) - ( 3x + 3y ) - 35

= ( x + y )2 - 3( x + y ) - 35

= 52 - 3.5 - 35

= 25 - 15 - 35 = -25

2. 4x2 + y2 + 8x - 4xy - 4y + 100

= ( 4x2 - 4xy + y2 + 8x - 4y + 4 ) + 96

= [ ( 4x2 - 4xy + y2 ) + ( 8x - 4y ) + 4 ] + 96

= [ ( 2x - y )2 + 2.( 2x - y ).2 + 22 ] + 96

= ( 2x - y + 2 )2 + 96

= ( 4 + 2 )2 + 96

= 62 + 96 = 36 + 96 = 132