Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C=\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(C=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{999}{1000}\)\(=\frac{1.2.3...999}{2.3.4...1000}=\frac{1.\left(2.3.4....999\right)}{\left(2.3.4....999\right).1000}\)\(=\frac{1}{1000}\)
b) Đặt: A=\(1+2+2^2+2^3+...+2^{2008}\)
\(\Leftrightarrow2A=2+2^2+2^3+....+2^{2008}+2^{2009}\)
\(\Leftrightarrow2A-A=2^{2009}-1\)
\(\Leftrightarrow A=2^{2009}-1\)
\(\Rightarrow S=\frac{2^{2009}-1}{1-2^{2009}}\)\(=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=\frac{1}{-1}=-1\)
vậy: S=(-1)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)
\(\frac{-17}{2.4}-\frac{17}{4.6}-\frac{17}{6.8}-...-\frac{17}{100.102}\)
\(=-\frac{17}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\right)\)
\(=-\frac{17}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}\right)\)
\(=-\frac{17}{2}\left(\frac{1}{2}-\frac{1}{102}\right)\)
\(=-\frac{17}{2}.\frac{25}{51}=-\frac{25}{6}\)
Bài 2:
a) \(\frac{4}{9}+x=\frac{-5}{3}\)
\(\Leftrightarrow x=\frac{-5}{3}-\frac{4}{9}\)
\(\Leftrightarrow x=\frac{-15}{9}-\frac{4}{9}\)\(=\frac{-19}{9}\)
Vậy: \(x=\frac{-19}{9}\)
b) \(2,4:\left(\frac{1}{2}.x-\frac{3}{4}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{24}{10}:\left(\frac{1}{2}x-\frac{3}{4}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{3}{4}=\frac{24}{10}:\frac{3}{10}=\frac{24}{10}.\frac{10}{3}\)\(=8\)
\(\Leftrightarrow\frac{1}{2}x=8+\frac{3}{4}=\frac{35}{4}\)
\(\Leftrightarrow x=\frac{35}{4}:\frac{1}{2}=\frac{35}{4}.2=\frac{35}{2}\)
c) \(\frac{x+1}{-8}=\frac{-2}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=\left(-2\right).\left(-8\right)\)
\(\Leftrightarrow\left(x+1\right)^2=16=4^2=\left(-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-5\right\}\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
\(Q=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)
\(Q=\left(\frac{1}{2}\right).\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)...\left(\frac{99}{100}\right)\)
\(Q=\frac{1}{100}\)
\(P=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(P=\left(\frac{1.3}{1.3}+\frac{1}{1.3}\right)\left(\frac{2.4}{2.4}+\frac{1}{2.4}\right)\left(\frac{3.5}{3.5}+\frac{1}{3.5}\right)...\left(\frac{99.101}{99.101}+\frac{1}{99.101}\right)\)
\(P=\left(\frac{4}{1.3}\right)\left(\frac{9}{2.4}\right)\left(\frac{16}{3.5}\right)...\left(\frac{10000}{99.101}\right)\)
\(P=\left(\frac{2^2}{1.3}\right)\left(\frac{3^2}{2.4}\right)\left(\frac{4^2}{3.5}\right)...\left(\frac{100^2}{99.101}\right)\)
Bạn tự tách ra rồi bạn sẽ ra kết quả như ở dưới
\(P=\frac{201}{100}\)
\(T=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(T=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(T=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(T=2.\frac{502}{1005}=\frac{1004}{1005}\)
\(\Rightarrow T=\frac{1004}{1005}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009+2011}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2009+2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\frac{2010}{2011}\)
\(\Rightarrow A=\frac{1005}{2011}\)