\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

1/1x2 + 1/2x3 +1/3x4 + ......+1/98x99+1/99x100

=1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/98 - 1/99 + 1/99 + 1/100

=(1-1/100)+(1/2 - 1/2 ) + ( 1/3 - 1/3 ) + ...... + (1/98 - 1/98 ) + ( 1/99 - 1/99 )

= 100/100 - 1/100 + 0 + 0 +.....+ 0 + 0

=99/100

vậy GTBT = 99/100

15 tháng 4 2016

bn vào câu hỏi tương tự là có

1 tháng 7 2019

Lời giải :

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

ko chép lại đề :

\(\frac{1}{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)\(\frac{1}{99}\)\(\frac{1}{99}\)\(\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)

23 tháng 9 2014

Ta thấy: 1/1x2= 1/1-1/2

1/2x3= 1/2-1/3...

1/99x100= 1/99-1/100

Vậy A= 1-1/2+1/2-1/3+...1/99- 1/100= 1-1/100= 99/100

( Thông cảm vì máy tính của mình không có phần mềm để biểu thị phân số nên đành viết gạch chéo vậy)

19 tháng 3 2020

Ta có :

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

4 tháng 8 2014

TA CÓ\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)\(\frac{99}{100}\)

5 tháng 10 2016

1/1 - 1/101 = 100/101

5 tháng 10 2016

bằng 100/101

6 tháng 6 2017

\(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)

6 tháng 6 2017

=1X2X3/1X2X3X4X2= 1/8                 =3X2X2X2X5/3X2X2X5X2= 1/1

=1/8X1/1=1/8

18 tháng 8 2015

C = \(\frac{3}{2.3.4}+\frac{3}{3.4.5}+.....+\frac{3}{98.99.100}\)

C = \(3.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)

C = \(3.\frac{1}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)

C = \(\frac{3}{2}.\left(\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right)\)

C = \(\frac{3}{2}.\left(\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{100}{98.99.100}-\frac{99}{98.99.100}\right)\)

C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{99.100}\right)\)

C = \(\frac{3}{2}.\frac{1649}{9900}\)

C = \(\frac{1649}{6600}\)

18 tháng 8 2015

Hồ Thu Giang cần chứ nếu được cảm ơn nha

28 tháng 8 2017

Cho biểu thức A= 11×2×3 12×3×4 13×

4×5 +...+ 118×19×20 . So sánh A với 14 .

avt1312778_60by60.jpgDương Đình Hưởng

cố lên mà k

24 tháng 2 2018

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU)

\(=\frac{1}{2}-\frac{1}{10}\)

\(=\frac{5}{10}-\frac{1}{10}\)

\(=\frac{4}{10}=\frac{2}{5}\)

CHÚC BẠN HỌC TỐT!!!!!!!!

24 tháng 2 2018

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)

Đặt \(A=\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+.....+\frac{1}{9\times10}\)

Nhận xét:

\(\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{1}{4\times5}=\frac{1}{4}-\frac{1}{5};......;\frac{1}{9\times10}=\frac{1}{9}-\frac{1}{10}\)

Do đó \(A=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=\frac{1}{2}-\frac{1}{10}\)

\(A=\frac{2}{5}\)