K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Ta có : \(3\left(x^2+y^2\right)-\left(x^3+y^3\right)\)

\(=3\left(x^2+2xy+y^2-2xy\right)-\left(x+y\right)\left(x^2-xy+y^2\right)+1\)

\(=3\left(x+y\right)^2-6xy-2\left(x^2+2xy+y^2-3xy\right)\)

\(=3\left(x+y\right)^2-6xy-2\left(x+y\right)^2+6xy\)

\(=\left(x+y\right)^2\left(3-2\right)\)

\(=2^2=4\)

7 tháng 10 2017

Ta có:
\(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3\left(x^2+y^2\right)-\left(x+y\right)\left(x^2+y^2-xy\right)+1\)    ( 1 )
Do x + y = 2 nên biểu thức ( 1 ) trở thành:
\(=3\left(x^2+y^2\right)-2\left(x^2+y^2-xy\right)+1\)
\(=3\left(x^2+y^2\right)-2\left(x^2+y^2\right)+2xy+1\)
\(=\left(x^2+y^2\right)+2xy+1\)
\(=\left(x+y\right)^2+1\)    ( 2 )
Do x + y = 2 nên biểu thức ( 2 ) trở thành:
\(=2^2+1=5\)
Vậy với x + y = 2 thì \(3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1=5\)

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...

8 tháng 8 2018

\(x^2+y^2=\left(x+y\right)^2-2xy=1-2xy\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1-3xy\)

\(B=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)

\(=3-6xy-2+6xy\)

\(=1\)

15 tháng 9 2018

\(E=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2x^2-2xy+2y^2-3x^2-3y^2\)

\(=-x^2-2xy-y^2=-\left(x^2+2xy+y^2\right)=-\left(x+y\right)^2=-1\)

6 tháng 8 2019

\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)

\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

27 tháng 6 2019

\(N=x^3+y^3+6x^2y^2\left(x+y\right)+3xy\left(x^2+y^2\right)\)

\(N=x^3+y^3+6x^2y^2+3xy\left[\left(x+y\right)^2-2xy\right]\)

\(N=\left(x+y\right)\left(x^2-xy+y^2\right)+6x^2y^2+3xy-6x^2y^2\)

\(N=x^2-xy+y^2+3xy\)

\(N=\left(x+y\right)^2\)

\(N=1\)

27 tháng 6 2019

\(x^3+y^3+6x^2y^2\left(x+y\right)+3xy\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+6x^2y^2\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]\)

\(=x^2-xy+y^2+6x^2y^2+3xy-6x^2y^2\)(  Do  \(x+y=1\))

\(=\left(x+y\right)^2-2xy-xy+3xy+6x^2y^2-6x^2y^3\)

\(=\left(x+y\right)^2=1^2=1\)

9 tháng 3 2017

\(P=\left(x+y\right)\left\{\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\right\}\\ \)

Thây số vào

9 tháng 3 2017

VÌ \(x+y=7;xy=10\)

\(\Rightarrow x,y=5\)và \(2\)

\(\Rightarrow P=\left(5+2\right)\left(5^2+2^2\right)\left(5^3+2^3\right)\)

\(\Rightarrow P=7.29.133\)

    \(P=26999\)