Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i don't now
mong thông cảm !
...........................
a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=\frac{2016}{2017}\)
\(\Rightarrow\) \(S=\frac{1008}{2017}\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
NX \(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}\) =\(\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}-1\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}+1\right)^2}\)
=\(\frac{\left(\left(\sqrt{n+1}-\sqrt{n}\right)^2-1^2\right)}{n+1-n-1-2\sqrt{n}}\) \(=\frac{n+1+n-2\sqrt{\left(n+1\right)n}-1}{-2\sqrt{n}}=\frac{2n-2\sqrt{n\left(n+1\right)}}{-2\sqrt{n}}\)
=\(\frac{n-\sqrt{n\left(n+1\right)}}{-\sqrt{n}}=\frac{n}{-\sqrt{n}}+\frac{\sqrt{n\left(n+1\right)}}{\sqrt{n}}=-\sqrt{n}+\sqrt{n+1}\)
thay vao Q ta co
Q= \(-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{2012}+\sqrt{2013}=-\sqrt{2}+\sqrt{2013}\)
1/ \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\Rightarrow x^3-3x^2+3x-3=0\)
\(B=x^2\left(x^3-3x^2+3x-3\right)+x\left(x^3-3x^3+3x-3\right)+x^3-3x^2+3x-3+1945\)
\(B=1945\)
b/ Tương tự:
\(x-1=\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)
\(P=2016\)
Lời giải
a) Thay a=2+√3a=2+3 và b=2−√3b=2−3 vào P, ta được:
P=a+b−abP=2+√3+2−√3−(2+√3)(2−√3)P=2+2−(22−√32)P=4−(4−3)P=4−4+3=3P=a+b−abP=2+3+2−3−(2+3)(2−3)P=2+2−(22−32)P=4−(4−3)P=4−4+3=3
b) {3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2{3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2
Vậy nghiệm hệ phương trình (1; 2)
Có gì bạn tham khảo nha//