Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4^2.4^3/2^10=(2^2)^2/(2^2)^10=2^4/2^20=1/2^16
Nho cho minh nhe
Yen tam minh hoc roi khong sai dau
\(\frac{4^2.4^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
\(\frac{4^2.4^3}{2^{10}}=\frac{4^5}{2^{10}}=\frac{\left(2^2\right)^5}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
Bài 1:
a, \(\dfrac{-x-2}{3}\) = - \(\dfrac{6}{7}\)
- \(x\) - 2 = - \(\dfrac{18}{7}\)
\(x\) = - 2 + \(\dfrac{18}{7}\)
\(x\) = - \(\dfrac{4}{7}\)
Bài b, \(\dfrac{4}{7-x}\) = \(\dfrac{1}{3}\)
12 = 7 - \(x\)
\(x\) = 7 - 12
\(x\) = -5
\(\frac{4^2.4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}\)
\(=\frac{2^4.2^6}{2^{10}}\)
\(=\frac{2^{10}}{2^{10}}=1\)
hai vế mỗi vế có kết qua bằng 1
khi cộng 2 vầ ta có kết quả chính bằng 2
vậy thôi
dễ
\(\frac{4^2.4^3}{2^{10}}+\frac{3^2.3^3}{3^5}\)
\(=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}+\frac{3^{2+3}}{3^5}\)
\(=\frac{2^4.2^6}{2^{10}}+\frac{3^5}{3^5}\)
\(=\frac{2^{4+6}}{2^{10}}+1\)
\(=\frac{2^{10}}{2^{10}}+1\)
\(=1+1\)
\(=2\)
\(\Leftrightarrow N=\frac{\left(2.3.4....50\right)\left(2.3.4...........50\right)}{\left(1.2.3.........49\right)\left(3.4.5...........51\right)}=\frac{50.2}{51}=\frac{100}{51}\)
\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+....+\frac{50^2}{49.51}\)
\(=\frac{2^2-1}{1.3}+\frac{3^2-1}{2.4}+....+\frac{50^2-1}{49.51}+\frac{1}{1.3}+\frac{1}{2.4}+....+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(1+1+...+1\right)+\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{51}\)
Tự làm tiếp :))
tớ nhầm đoạn này tí :((
\(=\left(1+1+....+1\right)+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)(49 chữ số 1)
\(=49+\frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\right)\right]\)
\(=49+\left(\frac{3}{2}-\frac{1}{50}-\frac{1}{51}\right):2\)Tự tính
\(\frac{4^2\cdot4^3}{2^{10}}\)
C1: \(=\frac{\left(2^2\right)^2\cdot\left(2^2\right)^3}{2^{10}}\)
\(=\frac{2^4\cdot2^6}{2^{10}}\)
\(=\frac{2^{10}}{2^{10}}=1\)
C2 : \(=\frac{4^{2+3}}{4^5}=\frac{4^5}{4^5}=1\)