Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A=2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ...... +2 mũ 100 tổng A chia cho 7 dư mấy
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
đặt \(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{18}}-\frac{1}{3^{19}}\)
\(4A=1-\frac{1}{3^{20}}\)
\(A=\frac{1-\frac{1}{3^{20}}}{4}\)
\(M=1+\frac{1-\frac{1}{3^{20}}}{4}=\frac{5-\frac{1}{3^{20}}}{4}\)
Ta có : 1:M=1+3-3^2+3^3-3^4+....+3^19-3^20
1/M=(1+3^2+3^4+....3^20)-(3+3^3+..+3^19)
1/M=[(3^20-1)/8]-[(3^21-3)/8]
1/M=[3^20-3^21+(-2)]/8
Bạn tự làm tiếp nhé
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(\Leftrightarrow M=1+\frac{1}{3-3^2+...+3^{19}-3^{20}}\)
Đặt A = 3 - 32 + ....+ 319 - 320
=> \(3A=3^2-3^3+...+3^{20}-3^{21}\)
\(\Rightarrow3A+A=3-3^{21}\)
\(\Rightarrow4A=3-3^{21}\)
\(\Rightarrow A=\frac{3-3^{21}}{4}\)
\(\Rightarrow M=1+\frac{1}{\frac{3-3^{21}}{4}}\)
!!!! K chắc lm linh tinh thôi
Sai thì sr nha
a,
= 44.(82+18)-4oo
= 44.100-400
= 4400-400
= 4000
b,
= [319+(-219)]+[598+(-98)
=100+500
=600
c,
= (17/28+18/29-19/30-20/31).0
=0
k cho mik nhé
B = (1 + 1/2)(1 + 1/3)(1 + 1/4) ...(1 + 1/100)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{101}{100}\)
= \(\frac{3.4.5....101}{2.3.4...100}=\frac{101}{2}\)
C = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)
\(=\frac{1.2.3...999}{2.3.4....1000}=\frac{1}{1000}\)
S = 1 + ( - 2 ) + 3 + ( - 4 ) + ........ + ( - 98 ) ( có 98 số )
S = - 1 + ( - 1 ) + ........ + ( - 1 ) ( có 49 số )
S = - 1 . 49
S = - 49
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+......+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(\Rightarrow\frac{1}{3}M=\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+.......+\frac{1}{3^{20}}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{1}{3}M+M=1+\frac{1}{3}+\frac{1}{3}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{4}{3}M=\frac{5}{3}-\frac{1}{3^{21}}\)\(\Rightarrow M=\frac{\frac{5}{3}-\frac{1}{3^{31}}}{\frac{4}{3}}\)