K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Số này lớn hơn 4 và nhỏ hơn 5 thôi, (rất gần 5)

Tính thế nào được A.

lụi đê ( lụi nhg đúng :D )

\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)

\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)

20 + A = A2

GIẢI RA TÌM A 

 

 

15 tháng 10 2015

\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}<\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{25}}}}=5\)

\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}>\sqrt{20}>\sqrt{16}=4\)

\(\Rightarrow4<\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}<5\)

Vì có nhiều dấu căn nên lấy giá trị của biểu thức đã cho là 5.

30 tháng 8 2019

nhầm đề ak,cái này tính D nghe hợp lý hơn

30 tháng 8 2019

D=\(\sqrt{20+\sqrt{20+....+\sqrt{20+\sqrt{25}}}}\)= \(\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)=\(\sqrt{20+\sqrt{20+....+\sqrt{25}}}\)

=............=\(\sqrt{20+\sqrt{25}}\)=\(\sqrt{20+5}=5\)

Vậy D=5

14 tháng 11 2018

Áp dụng:   \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

=>  \(x^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)

           \(=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)

\(=40+6x\)

=>  \(x^3-6x=40\)

14 tháng 11 2018

ta có \(x^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)\(=20+14\sqrt{2}+3\sqrt[3]{\left(20+14\sqrt{2}\right)^2}.\sqrt[3]{20-14\sqrt{2}}+20-14\sqrt{2}\)\(+3\sqrt[3]{20+14\sqrt{2}}.\sqrt[3]{\left(20-14\sqrt{2}\right)^2}=\)\(40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)

\(=40+3\sqrt[3]{20^2-14\sqrt{2}^2}.x\)x này là đề bài cho nên thay vào nha bạn

\(=40+3.2.x\)\(hay\)\(x^3=6x+40\Leftrightarrow x^3-6x=40\)(đây là kết quả cần tìm)

3 tháng 8 2017

b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)

Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)

Đặt  \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)

Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)

\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)

Vậy \(x=3;y=-2013;z=2016\)

20 tháng 8 2016

Ta có x= 40 + 6x 

=> M = 40

6 tháng 11 2019

\(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)

Đặt \(\sqrt[3]{20+14\sqrt{2}}=a;\sqrt[3]{20-14\sqrt{2}}=b\).Từ đó => a + b = x và ab=2

\(\Rightarrow x^3=40+3ab\left(a+b\right)\)

\(\Leftrightarrow x^3=40+6x\)

\(\Leftrightarrow x^3-6x-40=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+10\right)=0\)

Dễ thấy \(x^2+4x+10=\left(x+2\right)^2+6>0\)

\(\Rightarrow x=4\).Thay vào ta tìm được P = 1969