K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Bài 1:

a) \(\left(x-2\right)\left(x+15\right)=0\)

\(\Rightarrow\left[\begin{matrix}x-2=0\\x+15=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-15\end{matrix}\right.\)

Vậy \(x\in\left\{3;-15\right\}\)

Các phần khác làm tương tự

Bài 2:

Ta có: \(-\left(x-1\right)^2\le0\)

\(\Rightarrow M=2012-\left(x-1\right)^2\le2012\)

Vậy \(MIN_M=2012\) khi \(x=1\)

Bài 3:

Ta có: \(\left|x-3\right|\ge0\)

\(\Rightarrow N=\left|x-3\right|+10\ge10\)

Vậy \(MAX_M=10\) khi \(x=3\)

Bài 4:

Ta có: \(n-6⋮n-4\)

\(\Rightarrow\left(n-4\right)-2⋮n-4\)

\(\Rightarrow2⋮n-4\)

\(\Rightarrow n-4\in\left\{1;-1;2;-2\right\}\)

\(\left[\begin{matrix}n-4=1\\n-4=-1\\n-4=2\\n-4=-2\end{matrix}\right.\Rightarrow\left[\begin{matrix}n=5\\n=3\\n=6\\n=2\end{matrix}\right.\)

Vậy \(n\in\left\{5;3;6;2\right\}\)

Bài 5: Tương tự bài 4

18 tháng 1 2017

Bài 1:

b)\(\left(x+15\right)\left(x-12\right)=0\)

\(\Rightarrow\left[\begin{matrix}x+15=0\\x-12=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=-15\\x=12\end{matrix}\right.\)

c)\(\left(x-7\right)\left(x+19\right)=0\)

\(\Rightarrow\left[\begin{matrix}x-7=0\\x+19=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=7\\x=-19\end{matrix}\right.\)

d)\(\left(x-11\right)\left(x+5\right)=0\)

\(\Rightarrow\left[\begin{matrix}x-11=0\\x+5=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=11\\x=-5\end{matrix}\right.\)

Bài 5:

\(\frac{n-5}{n-2}=\frac{n-2-3}{n-2}=\frac{n-2}{n-2}-\frac{3}{n-2}=1-\frac{3}{n-2}\in Z\)

\(\Rightarrow3⋮n-2\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

2 tháng 5 2017

a) Với mọi x nguyên ta luôn có:  \(\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  x = 1.

Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)

Vậy GTNN của A là 2008 tại x = 1.

b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)

.Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left|x+4\right|=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  x = -4.

Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)

Vậy GTNN của B là 1996 tại x = -4.

2 tháng 5 2017

c)  \(C=\frac{5}{x-2}\) nhỏ nhất  \(\Leftrightarrow\)  x - 2 lớn nhất, mà x nguyên nên ko tìm đc giá trị của x

bn xem lại đề câu c, d được ko

chắc đề là: "Tìm x nguyên để   \(C=\frac{5}{x-2}\) đạt giá trị nguyên nhỏ nhất"

a) Ta có :\(\left|3-x\right|\ge0\forall x\in R\)

Nên : \(-\left|3-x\right|\le0\forall x\in R\)

Do đó : \(Q=1010-\left|3-x\right|\le1010\forall x\in R\)

Vậy \(Q_{max}=1010\) đấu "=" xày ra khi |3 - x| = 0 

                                                        <=> 3 - x = 0 

                                                            <=> x = 3

b) Ta có : \(\left(3-x\right)^2\ge0\forall x\in R\)

Nên : \(\left(3-x\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\frac{5}{\left(3-x\right)^2+1}\le\frac{5}{1}=5\)

Vậy \(C_{max}=5\) dấu bằng sảy ra khi (3 - x)2 + 1 = 1

                                                        <=> (3 - x)2 =0 

                                                           <=> 3 - x = 0 

                                                                  <=> x = 3 

c) Ta có : \(\left|x-2\right|\ge0\forall x\)

Nên : \(\left|x-2\right|+2\ge2\forall x\)

Suy ra : \(\left|x-2\right|+2\le\frac{4}{2}=2\forall x\)

Vậy \(D_{max}=2\) dấu "=" xảy ra khi |x - 2| + 2 = 2 

                                                  <=> |x - 2| = 0 

                                                 <=> x - 2 =0 

                                                        <=> x = 2 

20 tháng 4 2018

a)\(Q=1010-|3-x|\)

Để Q có giá trị lớn nhất \(\Leftrightarrow|3-x|\)là số nguyên dương nhỏ nhất có thể =>\(|3-x|=1\)\(\Leftrightarrow3-x=1\Leftrightarrow x=2\)

@_@

4 tháng 8 2017

a, A =I x - 3I +10

\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc  bằng 0 vs mọi x)

Dấu ''='' xảy ra khi x-3=0

                       <=>x = 3

Vậy giá trị nhỏ nhất của A là 10 khi x = 3

b, \(B=-7+\left(x-1\right)^2\)

\(\Rightarrow B\ge-7\forall x\)

Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

Vậy giá trị nhỏ nhất của B là -7 khi x=1

c, C= -3 - I x -2I

\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2 

Vây giá trị lớn nhất của C là - 3 khi x = 2.

d, \(D=15-\left(x-2\right)^2\)

\(\Rightarrow D\le15\)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2

Vây giá trị lớn nhất của D là 15 khi x = 2

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

3 tháng 5 2017

a) Ta có \(\frac{x-3}{x-2}=\frac{\left(x-2\right)-1}{x-2}=1-\frac{1}{x-2}\)

Để \(1-\frac{1}{x-2}\in Z\Rightarrow x-2\inƯ\left(1\right)\Rightarrow x-2\)thuộc 1;-1

+) Với x-2=1 thì \(x=3\)

+) Với x-2=-1 thì \(x=1\)