Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
NX \(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}\) =\(\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}-1\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}+1\right)^2}\)
=\(\frac{\left(\left(\sqrt{n+1}-\sqrt{n}\right)^2-1^2\right)}{n+1-n-1-2\sqrt{n}}\) \(=\frac{n+1+n-2\sqrt{\left(n+1\right)n}-1}{-2\sqrt{n}}=\frac{2n-2\sqrt{n\left(n+1\right)}}{-2\sqrt{n}}\)
=\(\frac{n-\sqrt{n\left(n+1\right)}}{-\sqrt{n}}=\frac{n}{-\sqrt{n}}+\frac{\sqrt{n\left(n+1\right)}}{\sqrt{n}}=-\sqrt{n}+\sqrt{n+1}\)
thay vao Q ta co
Q= \(-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{2012}+\sqrt{2013}=-\sqrt{2}+\sqrt{2013}\)
Với mọi n thuộc N ta có :
\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2}{n}-\frac{2}{n\left(n+1\right)}-\frac{2}{\left(n+1\right)}}\)
\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)
Áp dụng ta được :
\(S=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)
\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)
\(=\frac{\sqrt{\frac{2+2\sqrt{2}+1}{3}}+\sqrt{\frac{2-2\sqrt{2}+1}{3}}}{\sqrt{\frac{2+2\sqrt{2}+1}{3}}-\sqrt{\frac{2-2\sqrt{2}+1}{3}}}\)
\(=\frac{\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{3}}+\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}{\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{3}}-\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{3}}}\)
\(=\frac{\frac{\sqrt{2}+1+\sqrt{2}-1}{\sqrt{3}}}{\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{3}}}=\frac{\frac{2\sqrt{2}}{\sqrt{3}}}{\frac{2}{\sqrt{3}}}=\sqrt{2}\)
a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=\frac{2016}{2017}\)
\(\Rightarrow\) \(S=\frac{1008}{2017}\)
\(=\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}=\frac{\sqrt{2}+1+\sqrt{2}-1}{\sqrt{2}+1-\sqrt{2}+1}=\frac{2\sqrt{2}}{2}=\sqrt{2}\)
bài 2 là bài 21 trong nâng cao phát triển toán 9, chắc bạn có chứ
Bài 1: Ta có:
\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}=5+\sqrt{13+x}\)
\(\Rightarrow x^2-5=\sqrt{13+x}\Rightarrow x^4-10x^2+25=13+x\Leftrightarrow x^4-10x^2-x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)
Pt này có 1 nghiệm x = 3 và 3 nghiệm nhỏ hơn 2.
Vì \(x>\sqrt{4}=2\)
Vậy x = 3.
Mỗi biểu thức trong dấu căn có dạng:
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}\) ( Với \(k\ge2\))
Ta có:
\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}\)
\(=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}\)
\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}\)
Mỗi biểu thức trong dấu căn có dạng:
1+1k2 +1(k+1)2 ( Với k≥2)
Ta có:
1+1k2 +1(k+1)2 =k2(k+1)2+(k+1)2+k2k2(k+1)2 =k4+2k3+k2+k2+2k+1+k2k2(k+1)2
=k4+2k2(k+1)+(k+1)2k2(k+1)2 =(k2+k+1)2(k(k+1))2
⇒√1+1k2 +1(k+1)2 =k2+k+1k2+k =1+1k(k+1) =1+1k −1k+1
⇒S=1+1−12 +1+12 −13 +1+13 −14 +...+1+12013 −12014 =2014−12014