K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

các bn giúp mk dzới

15 tháng 4 2019

a)\(\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)

\(=\left(100+121+144\right)\div\left(169+196\right)\)

\(=365\div365\)

\(=1\)

b) \(1.2.3...9-1.2.3...8-1.2.3...8^2\)

\(=1.2.3...8\left(9-1-8\right)\)

\(=1.2.3...8.0\)

\(=0\)

15 tháng 4 2019

d) \(1152-\left(374+1152\right)+\left(-65+374\right)\)

\(=1152-374-1152-65+374\)

\(=\left(1152-1152\right)-65+\left(374-374\right)\)

\(=0-65+0\)

\(=-65\)

e) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)

\(=13-\left(12-11\right)+\left(10-9\right)+\left(8-7\right)-\left(6-5\right)-\left(4-3\right)\)\(+\left(2-1\right)\)

\(=13-1+1+1-1-1+1\)

\(=13+0+0+0\)

\(=13\)

8 tháng 6 2018

b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1

8 tháng 6 2018

b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

c,Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(.....\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                                             \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                               \(=1-\frac{1}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)

Phần b mình chưa nghĩ ra

a) C = 1 . 2 + 2 . 3 + ... + 49 . 50

=> 3C = 1 . 2 . 3 + 2 . 3 . 3 + ... + 49 . 50 . 3

=> 3C = 1 . 2 . ( 3 - 0 ) + 2 . 3 . ( 4 - 1 ) + ... + 49 . 50 . ( 51 - 48 )

=> 3C = 1 . 2 . 3 - 0 . 1 . 2 + 2 . 3 . 4 - 1 . 2 . 3 + ... + 49 . 50 . 51 - 48 . 49 . 50

=> 3C = 49 . 50 . 51

=> C = 49 . 50 . 17 = 41650

28 tháng 9 2016

a/ \(3A=1.2.3+2.3.3+3.4.3+4.5.3+...+29.30.3.\)

\(3A=1.2.3+2.3\left(4-1\right)+3.4.\left(5-2\right)+4.5\left(6-3\right)+...+29.30\left(31-28\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+29.30.31-28.29.30\)

\(3A=29.30.31\Rightarrow A=\frac{29.30.31}{3}=10.29.31=8990\)

c/ \(C=1+2\left(1+1\right)+3\left(2+1\right)+4\left(3+1\right)+...+30\left(29+1\right)\)

\(C=1+2+1.2+2.3+3+3.4+4+...+29.30+30\)

\(C=\left(1+2+3+4+...+30\right)+\left(1.2+2.3+3.4+...+29.30\right)\)

Dấu ngoặc thứ nhất là tính tổng 1 cấp số cộng, dấu ngoặc thứ 2 chính là câu a

b/ Câu b dãy viết ngắn quá chưa tìm ra quy luật

28 tháng 9 2016

a) A = 1.2 + 2.3 + ... + 29.30

=> 3A = 1.2.3 + 2.3.(4-1) + ... + 29.30.(31-28)

          = 1.2.3 + 2.3.4 - 1.2.3 + ... + 29.30.31 - 28.29.30

          = 29.30.31

=> A = \(\frac{29.30.31}{3}=8990\)