K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

a) phép tính đã cho bằng 24x2y3z: (-6x2y2z2) +(-12x3y2z3) : (-6x2y2z2) + 36x2y2z2 : (-6x2y2z2) = -4y+2xz-6. Thế x,y,z vào rồi tính nha

câu b khi nãy mình giải ở dưới rồi :)

25 tháng 7 2016

Giải chỗ thế cho mình với mình chưa hiểu chõi thế làm như nào bạn giải giúp mình với. Sắp 2h30 rồi 

25 tháng 7 2016

a) \(\frac{-x^2y^5}{-x^2y^5}=1\)

b)\(\frac{-\left(x^7y^5z\right)^2}{-\left(xy^3z\right)^2}=\frac{x^{14}y^{10}z^2}{x^2y^6z^2}=x^7.y^4\)Thế vào ta được 1.(-10)^4=10000 cái khi nãy làm lộn

25 tháng 7 2016

câu a cả tử và mẫu đều giống nhau nên kết quả là 1

b) chia ra ta được x6y2. Thế vào thì ra 1.102=100

25 tháng 7 2016

mình làm ở dưới rồi nha :)

25 tháng 7 2016

Xem lại những bài viết đã đăng nha có bài giải chi tiết rồi đó

19 tháng 7 2016
Mọi người giải giuos e trước 2h20p cũng đc ạ càng nhanh càng tốt e cảm ơn
19 tháng 7 2016

A= 2x^2 + 4x + xy + 2y 

=(xy+2x2)+(2y+4x)

=x(y+2x)+2(y+2x)

=(x+2)(y+2x)

Thay x=88,y=-76 ta được:

A=(88+2)*(-76+2*88)

=90*100

=9 000

B= x^2 +xy - 7x - 7y

=(xy-7y)+(x2-7x)

=y(x-7)+x(x-7)

=(x-7)(y+x).Thay vào tính bình thường 

19 tháng 7 2016

cái này mk làm ở câu dưới của bạn r` đó -_-" nèCâu hỏi của Phạm Hoa - Toán lớp 8 - Học toán với OnlineMath

19 tháng 7 2016

a, =(x+2)*(y+2*x)

= (88+2)(y+2.-76)

= 90*y-6660

b, = (x-7)*(y+x)

\(\left(7\frac{3}{5}-7\right)\left(2\frac{2}{5}+7\frac{3}{5}\right)\)

= 3/5 . 10

=6

k cho tớ nha :)))))) 

9 tháng 6 2021

\(a^2-2a+6b+b^2=-10\\ \Leftrightarrow a^2-2a+1+b^2+6b+9=0\\ \Leftrightarrow\left(a-1\right)^2+\left(b+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-3\end{matrix}\right.\)

Vậy \(\left(a;b\right)=\left(1;-3\right)\)

9 tháng 6 2021

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\\ \Leftrightarrow xy+yz+zx=0\\ \Rightarrow\left\{{}\begin{matrix}xy+yz=-zx\\xy+zx=-yz\\yz+zx=-xy\end{matrix}\right.\)

Ta có: 

\(A=\dfrac{xz+yz}{z^2}+\dfrac{xy+yz}{y^2}+\dfrac{xy+xz}{x^2}\\ =\dfrac{-xy}{z^2}+\dfrac{-xz}{y^2}+\dfrac{-yz}{x^2}\\ =-xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\\ =-xyz\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}-\dfrac{2}{xy}-\dfrac{2}{yz}-\dfrac{2}{xz}\right)\\ =0\)

6 tháng 12 2015

Ta có:

\(x^3+y^3+z^3=3xyz\)

nên  \(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2+\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\right]=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow^{x+y+z=0}_{x=y=z}\)

Do đó:

\(M=\left(2-\frac{x}{y}\right)^{2013}+\left(3-\frac{2x}{z}\right)^{2014}+\left(4-\frac{3z}{x}\right)^{2015}\)

\(=\left(2-\frac{y}{y}\right)^{2013}+\left(3-\frac{2z}{z}\right)^{2014}+\left(4-\frac{3x}{x}\right)^{2015}\)

\(=\left(2-1\right)^{2013}+\left(3-2\right)^{2014}+\left(4-3\right)^{2015}\)

\(M=1^{2013}+1^{2014}+1^{2015}=1+1+1=3\)

                                                    ----------------------------------------------------