K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

Điều kiện xác định của phân thức: x ≠ 2

Ta có Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

Với Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 thỏa mãn điều kiện xác định của phân thức

Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

21 tháng 12 2020

a, P xác định khi \(x^3-8\ne0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\ne0\)

\(\Leftrightarrow x\ne2\left(\text{Vì }x^2+2x+4>0\right)\)

b, \(P=\dfrac{3x^2+6x+12}{x^3-8}=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

c, \(x=\dfrac{4001}{2000}\Rightarrow P=\dfrac{3}{\dfrac{4001}{2000}-2}=6000\)

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

25 tháng 9 2021

\(a,A=\dfrac{2x\left(x-3\right)+8\left(x+3\right)-2x-12}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x^2+6}\\ A=\dfrac{2x^2-6x+8x+24-2x-12}{\left(x-3\right)}\cdot\dfrac{1}{x^2+6}\\ A=\dfrac{2x^2+12}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2\left(x^2+6\right)}{\left(x-3\right)\left(x^2+6\right)}=\dfrac{2}{x-3}\)

\(b,A=5\Leftrightarrow\dfrac{2}{x-3}=5\Leftrightarrow5x-15=2\Leftrightarrow x=\dfrac{17}{5}\)

9 tháng 6 2017

a) Điều kiện:
          x3 - 8 \(\ne\)0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4)\(\ne\)0
\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x^2+2x+4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)^2+3\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)^2\ne-3\end{cases}}\)
(vô lí vì (x + 1)2 \(\ge\)0 > -3)
\(\Rightarrow\)\(\ne\)2

b) \(\frac{3x^2+6x+12}{x^3-8}\)
\(=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{3}{x-2}\)

c) Thế x = \(\frac{4001}{2000}\)vào, ta có:
\(\frac{3x^2+6x+12}{x^3-8}\)
\(=\frac{3}{x-2}\)
\(=\frac{3}{\frac{4001}{2000}-2}\)
\(=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}\)
\(=\frac{3}{\frac{1}{2000}}\)
\(=3.2000=6000\)

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

3 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne0\end{cases}}\)

a) \(P=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right):\frac{x^2-4+10-x^2}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x\left(x+2\right)+x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}:\frac{6}{x-2}\)

\(\Leftrightarrow P=\frac{x^2-2x^2-4x+x^2-2x}{x\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{6}\)

\(\Leftrightarrow P=\frac{-6x}{6x\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{-1}{x+2}\)

b) Khi \(\left|x\right|=\frac{3}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=-\frac{1}{\frac{3}{4}+2}=-\frac{4}{11}\\P=-\frac{1}{-\frac{3}{4}+2}=-\frac{4}{5}\end{cases}}\)

c) Để P = 7

\(\Leftrightarrow-\frac{1}{x+2}=7\)

\(\Leftrightarrow7\left(x+2\right)=-1\)

\(\Leftrightarrow7x+14=-1\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\frac{15}{7}\)

Vậy để \(P=7\Leftrightarrow x=-\frac{15}{7}\)

d) Để \(P\inℤ\)

\(\Leftrightarrow1⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1\right\}\)

Vậy để  \(P\inℤ\Leftrightarrow x\in\left\{-3;-1\right\}\)