K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

\(\frac{a}{b}=\frac{-2}{3}\Rightarrow3a=-2b\)

thay vào C ta đc:

\(C=\frac{-2b-2b}{-2b+b}+\frac{-2b+2b}{2\left(-2b\right)-b}\)

=> \(C=\frac{-4b}{-b}+0=4\)

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)

29 tháng 3 2019

\(A=\frac{6a+2b}{2a+a+b}+\frac{3a+b}{2a+a+b}=\frac{9a+3b}{3a+b}=3\)

26 tháng 12 2020

Đặt ==k
 Suy ra a=4k
            b=9k
Ta có A=(3a -2b ≠ 0)

ð      A=
A=
A==
Vậy A=

26 tháng 12 2020

sorry sorry 
đặt a/4=b/9=k
=> a=4k
     b=9k
Ta có 
A=4a-2b/3a-2b
A=4.4k-2.9k/3.4k-2.9k
A= k(16-18)/k(12-18)
A=-2/-6
A=1/3 

10 tháng 8 2017

đặt a = 10k, b = 3k

\(\Rightarrow\frac{3\times10k-2\times3k}{10k-3\times3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)24

10 tháng 8 2017

Thế số vào phép tính, ta có đề:

Tính giá trị biểu thức

\(\frac{310-23}{10-33}=tử-tử\) và  \(mẫu-mẫu\)

\(=\frac{310-23}{10-33}=\frac{287}{-23}\)

Đs:

Đơn giản mà cũng hỏi

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

\(a+b=9\Rightarrow 2a+9=2a+(a+b)=3a+b\)

\(\Rightarrow \frac{6a+2b}{2a+9}=\frac{6a+2b}{3a+b}=\frac{2(3a+b)}{3a+b}=2(1)\)

\(a+b=9\Rightarrow b=9-a\Rightarrow -3a-b=-3a-(9-b)=-2a-9\)

\(\Rightarrow \frac{-3a-b}{-2a-9}=\frac{-2a-9}{-2a-9}=1(2)\)

Từ \((1);(2)\Rightarrow A=\frac{6a+2b}{2a+9}+\frac{-3a-b}{-2a-9}=2+1=3\)

10 tháng 2 2018

Ta có:\(\frac{3a-b}{2a+15}=\frac{3a-b}{2a+a-b}=\frac{3a-b}{3a-b}=1\)

          \(\frac{3b-a}{2b-15}=\frac{3b-a}{2b-\left(a-b\right)}=\frac{3b-a}{3b-a}=1\)  

=>P=1+1=2

10 tháng 2 2018

Ta có a = 15 + b

=> \(\frac{3a-b}{2a+15}+\frac{3b-a}{2b-15}\) = \(\frac{3\left(15+b\right)-b}{2\left(15+b\right)+15}+\frac{3b-\left(15+b\right)}{2b-15}\)

\(\frac{45+3b-b}{30+2b+15}+\frac{3b-15-b}{2b-15}\)

\(\frac{45+2b}{45+2b}+\frac{2b-15}{2b-15}\)= 1 + 1 = 2

17 tháng 11 2018

đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4,5}=k\)

\(\Rightarrow a=2k,b=-3k,c=-4,5k\)

thay vào biểu thức P ta có:

\(P=\frac{3.2k-2.\left(-3k\right)}{8.2k-\left(-3k\right)+3.\left(-4,5k\right)}=\frac{6k+6k}{7,5k}=\frac{12}{7,5}=\frac{8}{5}\)