Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(-y+6x)-(x+y)=-y+6x-x-y=5x-2y
ta có y=7 và y-x=12 => x=-5
thế x,y ta đó 5x-2y=-25-14=-39
b/ta có 3y2+3x2+6xy=3(x+y)2=3*1=3
a/ \(C=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-1\right)\)
\(C=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-1\right)=x+y-1\) (do x+y-2=0)
Mà x+y-2=0 => x+y-1=1 => C=1
b/ Với x=2; y=2 Ta nhận thấy \(x^3-2y^2=2^3-2.2^2=2^3-2^3=0\) => D=0
B = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
B = [x2(x + y) + x2] - [y2(x + y) + y2] + 2(x + y) + 2 + 1
B = x2(x + y + 1) - y2(x + y + 1) + 2(x + y + 1) + 1
B= (x + y + 1)(x2 - y2 + 2) + 1
Thay x + y + 1 = 0 vào B, ta được :
B = 0.(x2 - y2 + 2) + 1 = 1
Vậy B = 1
M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014
M=4.0+21xy.0+7x2y2.0+2014
M=0+0+0+2014=2014
nhớ
ko cho ko đâu
Ta có M = x3 + x2y - 2x2 - xy - y2 +3y + x + 2017
= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019
thay x + y - 2 = 0 vào M ta có : M = x2.0 - y.0 + 0 + 2019
= 2019
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)
Thay \(x+y-2=0\)vào đa thức ta được:
\(M=0.\left(x^2-y+1\right)+2019=2019\)
Từ x + y + 1 = 0
=> x + y = -1
B = x2(x + y) - y2(x + y) + x2 - y2 + 2(x + y) + 3
= (x + y)(x2 - y2) + (x2 - y2) + 2(x + y) + 3
= (x2 - y2)(x + y + 1) + 2(x + y) + 3
- Thay x + y + 1 = 0 ; x + y = -1 vào B , ta có:
=> B = (x2 - y2).0 + 2.(-1) + 3
= -2 + 3 = 1
Vậy B = 1 khi x + y + 1 = 0
Mơn bạn nhìu!!!